Содержание
- 1 Электрические цепи. Виды и составные части. Режимы работы
- 1.1 Виды и составные части
- 1.2 Внутренние и внешние электрические цепи
- 1.3 Такими силами могут выступать:
- 1.4 Напряжение в цепи может быть, как постоянным, так и переменным, в зависимости от свойств источника питания. По этому признаку в электротехнике электрические цепи разделяют на контуры цепей. Такое объяснение вида цепи упрощенное, так как закон изменения движения электронов намного сложнее
- 1.5 Практически в расчетах цепей применяют два класса источников питания:
- 1.6 Выключатель
- 1.7 Проводники
- 1.8 Потребители
- 1.9 В электронике существует множество разнообразных потребителей, которые можно разделить на классы:
- 1.10 Режимы электрической цепи
- 1.11 Холостой ход
- 1.12 Короткое замыкание
- 1.13 Номинальный режим
- 1.14 Согласованный режим
- 1.15 Они применяются в сложных устройствах для проверки работоспособности:
- 1.16 Похожие темы:
- 2 Электрические цепи
- 3 Электрическая цепь: схема, ее элементы и их обозначения элементов
- 4 Электрическая цепь
- 5 Внутренняя и внешняя электрическая цепь
Электрические цепи. Виды и составные части. Режимы работы
Различные элементы, соединенные проводниками электрического тока между собой, образуют электрические цепи. Перечень компонентов цепи может быть довольно большим. Существуют разные виды элементов цепи электрического тока: пассивные и активные, линейные и нелинейные и много других. Всю классификацию перечислить очень трудно.
Виды и составные части
Для работы цепи необходимо наличие соединительных проводников, потребителей, источника питания, выключателя. Контур цепи должен быть замкнут. Это является обязательным условием работы электрической цепи. Иначе ток в цепи протекать не будет. Не все контуры считаются электрическими цепями. Например, контуры зануления или заземления ими не признаются, так как в обычном режиме в них нет тока. Однако, по принципу действия они также являются электрическими цепями, так как в аварийных случаях в них протекает ток. Контур заземления и зануления замыкается с помощью грунта.
Внутренние и внешние электрические цепи
Для создания упорядоченного движения электронов, нужно наличие разности потенциалов между каким-либо участком цепи. Это обеспечивается при подключении напряжения в виде источника питания. Он называется внутренней электрической цепью. Остальные компоненты цепи образуют внешнюю цепь. Для задания движения зарядов в источнике питания против направления поля требуется приложить сторонние силы.
Такими силами могут выступать:
- Выход вторичной обмотки трансформатора.
- Батарея (гальванический источник).
- Обмотка генератора.
Напряжение в цепи может быть, как постоянным, так и переменным, в зависимости от свойств источника питания. По этому признаку в электротехнике электрические цепи разделяют на контуры цепей. Такое объяснение вида цепи упрощенное, так как закон изменения движения электронов намного сложнее
Кроме упорядоченного движения, электроны задействованы в хаотичном тепловом движении. Чем выше температура материала, тем больше скорость хаотичного движения носителей заряда. Однако, такой вид движения не участвует в создании электрического тока.
От источника питания зависит и род тока, то есть свойства внешней цепи. Батарея элементов выдает постоянное напряжение, а разные обмотки генераторов или трансформаторов выдают переменное напряжение. Это зависит от внутренних процессов в источнике питания.
Внешние силы, создающие движение электронов, называются электродвижущими силами, которые характеризуются работой, выполненной источником для перемещения единицы заряда, измеряется в вольтах.
Практически в расчетах цепей применяют два класса источников питания:
- Источники напряжения.
- Источники тока.
В реальности такие идеальные источники не существуют, но практически их пытаются имитировать. В бытовой сети мы имеем напряжение 220 вольт с определенными нормированными отклонениями. Это является источником напряжения, так как норма дана именно на этот параметр. Значение тока не играет большой роли. На электростанции круглосуточно поддерживается постоянная величина напряжения, независимо от запросов.
Источник тока действует по-другому. Он поддерживает определенный закон движения электронов, а величина напряжения не имеет значения. В пример можно привести сварочный аппарат. Для нормального хода сварки необходимо поддерживать постоянное значение тока. Эту функцию выполняет инверторный электронный блок.
Сеть питания может быть, как переменной, так и постоянной. Это не играет большой роли. Важнее выдержать, например, параметр ЭДС.
Выключатель
Это устройство позволяет соединить потребитель с источником питания. При пользовании выключателем, на его контактах образуется искра. Она возникает из-за наличия емкостного сопротивления. Чтобы избежать искрения, в электрическую цепь добавляются дроссели, а в выключатель устанавливают контакты специального вида. Электрические цепи могут иметь и другие решения для предотвращения возникновения искры.
Проводники
Электрические провода чаще всего производят из алюминия или меди. Это объясняется низким удельным сопротивлением этих металлов, хотя стоимость их в последнее время повышается. На проводах при работе выделяется тепло, которое зависит от двух параметров:
- Электрического тока.
- Сопротивления участка цепи.
Электрический ток определяется необходимостью потребителя, поэтому изменять можно только удельное сопротивление, которое должно быть как можно ниже. Все металлы при уменьшении температуры уменьшают сопротивление, в результате чего снижаются потери энергии. Если взять полупроводники, то среди них есть образцы с отрицательным и с положительным температурным коэффициентом сопротивления. Если сравнивать абсолютные значения сопротивления, то у металлов оно намного меньше.
Потребители
Все остальные компоненты электрической цепи, кроме перечисленных выше, считаются потребителями. Полезной нагрузкой является простая лампа накаливания, электродвигатель, нагревательное устройство. Параметры цепи слишком зависят от потребителей. Электрические цепи имеют обмотки трансформаторов, которые обладают большим индуктивным сопротивлением. Это отрицательно влияет на передачу электричества от источника.
https://www.youtube.com/watch?v=LzqkLKOyid8
Направление кроме тока может изменять и мощность. При этом энергия циркулирует в одну и в другую сторону. Такая мощность называется реактивной, и не выполняет полезной работы. Однако, она нагревает проводники и изменяет форму электрического сигнала. Поэтому в промышленных условиях целесообразно к электродвигателям параллельно подключать конденсаторы, которые будут компенсировать сопротивление с индуктивностью. В результате реактивная мощность замкнется внутри двигателя, и не выделит чрезмерного тепла в проводах.
Индуктивные потребители имеют важное свойство: они расходуют электроэнергию, которая превращается в магнитное поле и передается дальше.
В электронике существует множество разнообразных потребителей, которые можно разделить на классы:
- Активные потребители. Для своего функционирования им требуется наличие электрической энергии. От основной сети они практически не работают. К ним относятся транзисторы, микросхемы, тиристоры и много других видов, являющихся своеобразными электронными ключами. Электродвигатели имеют отличие в том, что работают непосредственно из сети питания.
- Пассивные потребители не нуждаются во внешнем источнике питания. Они пропускают через себя электрический ток особым образом. Например, полупроводники (тиристоры) начинают пропускать ток только при достижении определенной величины напряжения. Значит, они являются пассивными потребителями, и имеют нелинейные свойства пропускания тока. К таким же видам можно причислить диоды, пропускающие ток только в одну сторону. Другими словами, они имеют свойства вентиля. Также пассивными потребителями являются различные дроссели, конденсаторы, сопротивления. При наличии этих компонентов электрические цепи обретают необычные свойства. Например, контуры резонанса, состоящие из катушек и емкостей, применяют в виде фильтров для разной частоты волн.
Режимы электрической цепи
При подключении разного числа потребителей к источнику питания изменяется мощность, напряжение и ток, вследствие чего возникают различные режимы работы в цепи, и соответственно, компонентов, включенных в нее. Практически можно представить схему цепи в виде пассивного и активного двухполюсника. Это электрические цепи, соединенные с внешней частью двумя выводами с разной полярностью.
Особенностью активного двухполюсника является наличие источника электрического тока, у пассивного двухполюсника его нет. Популярными стали схемы замещения пассивных и активных элементов во время работы. Вид режима работы определяется свойствами элементов цепи.
Холостой ход
Это режим при отключенной нагрузке от питания при помощи ключа. В этом случае ток в цепи равен нулю. Напряжение достигает уровня ЭДС. Элементы цепи не работают.
Короткое замыкание
В этом случае выключатель на схеме замкнут, сопротивление равно нулю, соответственно, напряжение также равно нулю.
При применении двух рассмотренных режимов определяются свойства активного двухполюсника. При изменении тока в некоторых границах, зависящих от элемента цепи, нижняя граница всегда равна нулю. Этот элемент цепи начинает выдавать энергию в цепь. Также нужно знать, что если напряжение ниже нуля, это значит, что резисторами активного двухполюсника расходуется энергия источника, связанного по цепи, а также резерв самого прибора.
Номинальный режим
Такой режим необходим для создания технических свойств всей цепи и отдельных компонентов. В этом режиме свойства близки к величинам, указанным на компоненте, или в инструкции. Нужно учесть, что каждый прибор имеет свои параметры. Однако, три главных показателя есть у всех устройств – это напряжение, мощность и номинальный ток. Все компоненты электрических цепей также имеют эти показатели.
Согласованный режим
Этот режим применяется для создания наибольшей передачи активной мощности, передаваемой источником питания к потребителю. Когда производится работа в этом режиме, необходимо быть осторожным, во избежание выхода из строя части цепи.
Они применяются в сложных устройствах для проверки работоспособности:
- Ветвь. Это участок цепи с током одинаковой величины. Ветвь может иметь несколько последовательно соединенных элементов.
- Узел. Это место соединения нескольких ветвей.
- Контур. Это любой замкнутый участок цепи, имеющий несколько ветвей.
Похожие темы:
Источник: https://electrosam.ru/glavnaja/jelektrotehnika/elektricheskie-tsepi/
Электрические цепи
статьи
Электрические цепи, совокупности соединенных определенным образом элементов и устройств, образующих путь для прохождения электрического тока. Теория цепей – раздел теоретической электротехники, в котором рассматриваются математические методы вычисления электрических величин. Многие из этих электрических величин определяются параметрами компонентов, составляющих цепи, – сопротивлениями резисторов, емкостями конденсаторов, индуктивностями катушек индуктивности, токами и напряжениями источников электрической энергии. Электрические цепи подразделяются на цепи постоянного тока и цепи переменного тока.
Ток
Сила электрического тока в проводе определяется как электрический заряд, проходящий через поперечное сечение провода за единицу времени. Заряд измеряется в кулонах; один кулон в секунду равен одному амперу.
Направлением тока далее будем считать направление, в котором двигались бы положительные заряды. На самом деле ток в большинстве случаев создается движением электронов, которые, будучи заряжены отрицательно, движутся в направлении, противоположном принятому за направление тока. Ток неизменяющейся силы обозначается через I, а мгновенное значение изменяющегося тока – через i.
Потенциал
Если для перемещения заряда между двумя точками необходимо затратить энергию или если при перемещении заряда между двумя точками заряд приобретает энергию, то говорят, что в этих точках имеется разность потенциалов. Энергия необходима для перемещения заряда от более низкого потенциала к более высокому. На схемах рядом с точкой более высокого потенциала ставится знак +, а рядом с точкой более низкого – знак -.
Батарея или генератор электрического тока – это устройство, которое сообщает энергию зарядам. Источник тока перемещает положительные заряды от меньшего потенциала к большему за счет химической энергии. Неизменяющаяся разность потенциалов обозначается через V, а мгновенное значение изменяющейся разности потенциалов – через e.
Разность потенциалов на зажимах батареи или генератора называется электродвижущей силой (ЭДС) и обозначается через Eg, если она не изменяется, и через eg, если она переменна. Разность потенциалов в двух точках a и b обозначается через Vab. Разность потенциалов и ЭДС измеряются в вольтах.
Теория цепей
Цепь может представлять собой любую комбинацию батарей и генераторов, а также резистивных и реактивных элементов. Батареи и генераторы в теории цепей рассматриваются либо как источники напряжения (ЭДС) с определенным внутренним сопротивлением, либо как источники тока с определенной внутренней проводимостью. Цепь, не содержащая источников тока и напряжения, называется пассивной, а цепь с источниками тока или напряжения – активной.
Целью анализа цепи является определение полного сопротивления (импеданса) между любыми двумя точками цепи и нахождение математического выражения для тока через любой элемент цепи или для напряжения на любом элементе цепи при любых заданных ЭДС источников напряжения и любых токах источников тока. Всякий замкнутый путь тока в цепи называется контуром.
Узлом цепи называется всякая ее точка, в которой соединяются три или большее число ветвей цепи.
На рис. 1 представлена цепь с двумя контурами. Стрелками I1, I2 и I3 показано предполагаемое направление токов в импедансах этих контуров.
От токов не требуется, чтобы они были в фазе; но в простейшем случае, когда импедансы – сопротивления, решение уравнений относительно любого тока I будет отрицательным, если принято неправильное направление тока. Поэтому предполагаемое направление токов может быть любым.
Принятые положительные и отрицательные потенциалы, соответствующие ЭДС источников напряжения, указаны знаками + и -. Следует иметь в виду, что напряжение на импедансе понижается в направлении тока и повышается в противоположном направлении. Это тоже указано знаками + и -.
Законы Кирхгофа
Зависимости между токами и напряжениями в электрической цепи устанавливаются на основании двух законов, сформулированных Г.Кирхгофом (1847): 1) алгебраическая сумма ЭДС источников напряжения и напряжений на элементах контура равна нулю и 2) алгебраическая сумма токов в каждом узле равна нулю.
В первом законе Кирхгофа находит выражение то очевидное обстоятельство, что при полном обходе контура мы возвращаемся в исходную точку с тем же самым потенциалом. Второй закон Кирхгофа есть констатация того, что в узловой точке ток не может ни исчезать, ни возникать. Ток к узлу считается положительным, а ток от узла – отрицательным.
Применив закон Кирхгофа для напряжений к двум контурам цепи, представленной на рис. 1 (и воспользовавшись законом Ома – выражением VZ = IZ для напряжения на импедансе Z, создаваемого током I), мы получим для контура 1 уравнение
а для контура 2 – уравнение
Применив закон Кирхгофа для токов к любому из узлов, получаем
Если ЭДС (Eg)1 и (Eg)2, а также импедансы известны, то из уравнений (1)–(3) можно вычислить все три тока.
Контурные токи
В случае цепей с большим числом контуров метод контурных токов позволяет не записывать уравнения для токов, следующие из второго закона Кирхгофа. Для этого в той же цепи, что и раньше, представленной на рис. 2, принимают один ток для каждого контура. Как и прежде, направление токов выбирается произвольно. Закон Кирхгофа для напряжений дает для контура 1
а для контура 2 –
В напряжение на импедансе Z3, рассматриваемом как элемент одного контура, входит напряжение, обусловленное током другого контура: в уравнении (4) имеется слагаемое (–Z3I2), а в уравнении (5) – слагаемое (–Z3I1). Уравнения (4) и (5) можно было бы получить из уравнений (1)–(3), подставив в первые два ток I2 из третьего, но метод контурных токов приводит к тому же результату всего за два шага.
Принцип суперпозиции
Предположим, что в активной цепи в разных ее точках имеется несколько источников напряжения или тока. Согласно принципу суперпозиции, ток, создаваемый любым источником в любом элементе цепи, не зависит от других источников. Следовательно, полный ток в любом элементе равен сумме токов, создаваемых всеми источниками по отдельности. При вычислении тока, создаваемого каждым из источников напряжения или тока, другие источники напряжения заменяются их внутренними импедансами, а другие источники тока – их внутренними проводимостями.
Теорема Тевенена
Эта теорема, называемая также теоремой об эквивалентном источнике, утверждает, что любую активную цепь с двумя полюсами (зажимами) в установившемся режиме можно заменить источником напряжения с некоторым внутренним импедансом. ЭДС эквивалентного источника напряжения равна напряжению на полюсах ненагруженного заменяемого двухполюсника, а внутренний импеданс источника равен импедансу этого двухполюсника при ЭДС источников напряжения в нем, равных нулю.
Рассмотрим, например, цепь, представленную на рис. 3. Эта активная цепь заменяется источником напряжения, ЭДС Egў и внутренний импеданс Zgў которого таковы:
ЭДС Egў есть напряжение на разомкнутых полюсах a и b, равное напряжению на Z1. Внутренний импеданс Zgў равен импедансу между точками a и b исходного двухполюсника, т.е. импедансу последовательного соединения Z2 с параллельно соединенными Z1 и Zg. Для любого элемента, присоединенного к полюсам a и b обоих двухполюсников, токи и напряжения будут одинаковы.
Теорема Нортона
Эта теорема, аналогичная теореме Тевенена, утверждает, что любой активный двухполюсник можно заменить эквивалентным источником тока с некоторой внутренней проводимостью. Ток эквивалентного источника равен току короткого замыкания между полюсами a и b исходного двухполюсника. Внутренняя проводимость эквивалентного источника тока определяется тем же, что и в теореме Тевенена, импедансом между полюсами двухполюсника, присоединенным параллельно источнику. На рис. 4
а импеданс Zgў дается выражением (7). Если полюса a и b исходного двухполюсника замкнуть накоротко, то источник напряжения с ЭДС Eg будет нагружен импедансом Zg и параллельным соединением импедансов Z1 и Z2, откуда и следует выражение (8).
Преобразование Т-П
Часто требуется заменить Т-образный четырехполюсник П-образным или наоборот. Чтобы два таких четырехполюсника (рис. 5) были эквивалентны, должны быть одинаковы токи и напряжения между их полюсами при прочих равных условиях за пределами полюсов. Параметры цепи для преобразования Т ® П таковы:
Формулы для преобразования ПТ имеют вид
Переходные процессы
Переходным называется процесс изменения электрических величин в цепи при ее переходе из одного установившегося режима в другой. При анализе переходных процессов ток, напряжение или заряд в некоторой точке цепи обычно представляют в виде функции времени.
Рассмотрим цепь с источником напряжения (батареей с ЭДС Eg), представленную на рис. 6. После замыкания ключа сумма мгновенных значений напряжения на резисторе и конденсаторе должна быть равна Eg:
или, иначе,
Поскольку i = dq/dt, уравнение (10) можно переписать в виде дифференциального уравнения
решение которого таково:
Соответствующий ток равен:
где e – основание натуральных логарифмов.
На рис. 7 представлены графики изменения заряда конденсатора q и тока i во времени. В начальный момент (t = 0), когда ключ только замкнут, заряд конденсатора равен нулю, а ток равен Eg /R, как если бы конденсатора в цепи не было. Затем заряд конденсатора нарастает по экспоненте. Обусловленное зарядом напряжение на конденсаторе направлено навстречу ЭДС источника, и ток по экспоненте убывает до нуля. В момент замыкания ключа конденсатор эквивалентен короткому замыканию, а по истечении достаточно длительного времени (при t = Ґ) – разрыву цепи.
Постоянная времени RC-цепи определяется как время, за которое заряд достигает значения, на 1/e (36,8%) отличающегося от конечного значения. Она дается выражением
Аналогичные рассуждения можно провести для RL-цепи, представленной на рис. 8. Сумма мгновенных напряжений eR и eL должна быть равна Eg. Это условие записывается в виде дифференциального уравнения
решение которого таково:
На рис. 9 решение (11) представлено в графической форме. Сразу же после замыкания ключа (при t = 0) ток начинает быстро увеличиваться, наводя большое напряжение на катушке индуктивности. Наведенное напряжение противодействует изменению тока. По мере того как нарастание тока замедляется, наведенное напряжение уменьшается. При t = Ґ ток не меняется, и наведенное напряжение равно нулю. Таким образом, в конце концов ток принимает значение, которое он имел бы, если бы в цепи не было катушки индуктивности. (При t = 0 катушка индуктивности эквивалентна разрыву цепи, а по истечении достаточно длительного времени – короткому замыканию.)
Постоянная времени RL-цепи определяется как время, за которое ток достигает значения, на 1/e отличающегося от конечного значения. Она дается выражением
Мост Уитстона
Мост Уитстона – это схема электрической цепи для точного измерения сопротивлений на постоянном токе. Соответствующая принципиальная схема представлена на рис. 10, где измеряемое сопротивление обозначено через Rx. Остальные сопротивления известны, и их можно изменять. Если известные сопротивления подобрать так, чтобы высокочувствительный амперметр A показывал отсутствие тока, это означало бы, что потенциал точек b и c одинаков. В таком случае, обозначив ток через резисторы R1 и R3 символом I1, а ток через R2 и Rx – символом I2, можно записать
Поделив равенство (13) на (12) и решив полученное уравнение относительно Rx, находим
Схемой моста Уитстона можно пользоваться и для измерения полных сопротивлений (импедансов) на переменном токе. Для этого нужно вместо батареи взять источник напряжения переменного тока, а амперметр A заменить детектором переменного тока. Анализ схемы проводится аналогично, но в комплексных обозначениях.
Интегрирующая и дифференцирующая цепи
Дифференцирующей будет при некоторых приближенно выполняющихся условиях цепь рис. 6, если в ней источником напряжения является генератор напряжения e(t), зависящего от времени. Тогда уравнение (10) будет иметь вид
При малых R и C слагаемым iR можно пренебречь по сравнению с q/C:
что дает
Это эквивалентно требованию, чтобы постоянная времени RC была мала по сравнению с периодом напряжения e(t). Если такое условие выполняется, то напряжение на резисторе дается выражением
т.е. величина eR пропорциональна производной входного напряжения.
Если постоянная времени велика, а напряжение снимается с конденсатора, то эта цепь будет интегрирующей. В таком случае в уравнении (14) можно пренебречь величиной q/C по сравнению с iR, так что
или
.
Поскольку C = dq/dt, а q = 8 idt, напряжение на конденсаторе можно записать в виде
т.е. напряжение eC пропорционально интегралу входного напряжения.
Фильтры
Фильтры – это электрические цепи, пропускающие лишь определенные частоты и задерживающие все остальные. Идеальный фильтр верхних частот имеет полосу пропускания выше заданной «частоты среза» и полосу задерживания для более низких частот. Полосовой фильтр имеет полосу пропускания, расположенную между двумя заданными частотами среза. Общая схема включения фильтра показана на рис. 11. В качестве примера на рис. 12,a представлен фильтр нижних частот, включенный между генератором и нагрузкой R. На низких частотах импеданс катушек индуктивности мал, а конденсатора – велик, и почти весь ток проходит через нагрузку R.
На высоких частотах импеданс катушек индуктивности велик, из-за чего снижается ток, а импеданс конденсатора мал, так что он как бы замыкает накоротко цепь малого тока, проходящего через первую катушку индуктивности. Справа на рис. 12,a представлен график зависимости отношения E2 /(Eg /2) от частоты, деленной на частоту среза. Как нетрудно видеть, в области высоких частот сигнал быстро затухает. Однако реальная частотная характеристика заметно отличается от характеристики (с резким частотным срезом) идеального фильтра нижних частот. На рис.
12,б и в представлены схемы полосового фильтра и фильтра верхних частот с соответствующими частотными характеристиками.
Источник: https://www.krugosvet.ru/enc/nauka_i_tehnika/tehnologiya_i_promyshlennost/ELEKTRICHESKIE_TSEPI.html
Электрическая цепь: схема, ее элементы и их обозначения элементов
Во время изучения теории электрических цепей прежде всего необходимо начать с ознакомления с основными понятиями. Электрическая цепь представляет собой устройство, по которому течёт ток. Имея представление об основных терминах, необходимо рассмотреть, из чего состоит ЭЦ, а также как она устроена.
Что называется электрической цепью
ЭЦ – это комплекс элементов, при помощи которых создаётся, передаётся и потребляется электрическая энергия. Данные элементы, или участки, содержат источники электрической энергии, а также промежуточные устройства и проводники между ними, обеспечивающие неразрывность соединений.
Как по другому называется электрическая цепь
Источниками электрической энергии являются устройства, вырабатывающие ток путём физических, химических или световых преобразований.
Важно! Приемниками электроэнергии являются устройства, работа которых напрямую зависит от активности источника.
Промежуточные элементы с функциональными устройствами служат для передачи электрической энергии от источников к приемникам. В зависимости от назначения, они непосредственно передают энергию с конкретными параметрами источника.
Виды электрический цепи
Существует 3 основных вида соединения потребителей энергии:
- Последовательное соединение
Общий показатель сопротивления замкнутой ЭЦ неизменно повышается при увеличении количества потребителей. Исходя из этого правила можно сделать вывод, что показатель полного сопротивления будет являться суммой индивидуальных значений каждого включённого в цепь прибора. Любой прибор, включенный в сеть, получает лишь долю напряжения, так как суммарный показатель энергетической цепи распадается на количество потребителей.
Соединение элементов ЭЦ – основные виды
Подобная схема даёт полное представление о принципе работы электрической цепи. Если этот процесс происходит непосредственно у места разветвления, то ток проходит дальше по двум нагруженным участкам, что порождает определённое сопротивление. В результате этого его значение приравнивается сумме токов, расходящихся от данной точки. Что касается сопротивления, то оно значительно снижается по мере возрастания общей проходимости ЭЦ. Параллельное соединение позволяет всем устройствам функционировать независимо друг от друга.
- Комбинированное соединение
Включить электроприборы можно обоими способами – параллельным и последовательным, и такой тип соединения будет называться комбинированным. К примеру, можно рассмотреть защитную аппаратуру. Для ее подключения можно применить последовательный вариант, но этот способ может вызвать непредвиденный разрыв цепи.
Обратите внимание! Комбинированное соединение позволяет распределить нагрузку на линиях с целью предотвращения перегрузки.
Нелинейные и линейные
Нелинейные элементы придают ЭЦ свойства, которые не могут быть достигнуты в линейных цепях (стабилизация напряжения, усиление постоянного тока). Их, как правило, делят на неуправляемые и управляемые. К первому варианту можно отнести двухполюсные устройства. Их основное предназначение – полноценная работа без воздействия управляющего фактора (полупроводниковые терморезисторы или диоды). Ко вторму варианту относятся многополюсники, используемые при воздействии на них управляющего фактора (транзисторы и тиристоры).
Свойства нелинейных элементов выражаются в вольтамперных характеристиках. Они отображают зависимость тока от напряжения, для чего составляется конкретная эмпирическая формула, удобная для расчетов.
Метод пересечения показателей
Неуправляемые нелинейные элементы имеют одну вольтамперную характеристику. Их основным паратмером является управляющий фактор.
Цепи, включающие в себя только одиночные элементы, называют линейными. Основное свойство таких цепей — применимость принципа наложения. Это характеризуется тем, что результирующая реакция линейной цепи на несколько приложенных одновременно потребителей, равна сумме реакций на каждом участке.
Обратите внимание! У линейных элементов наблюдается постоянное сопротивление, в связи с чем график их вольтамперной характеристики представляет собой прямую линию, проходящую через начало координат.
Разветвленные и неразветвленные
ЭЦ может быть представлена в виде единого прямого элемента или иметь разветвления. На каждом участке неразветвленной цепи проходит ток с одинаковыми характеристиками. Простейшая разветвленная цепь состоит из трёх ветвей и двух узлов, в каждой из которых течет свой электрический ток. Любой участок можно идентифицировать, как отдельную составляющую цепи, образованную отдельными элементами, соединёнными последовательно в единое целое.
Узел – это точка, состоящая не менее, чем из трех ветвей. Узел, состоящий из двух ветвей, каждая из которых представляет собой продолжение другой, называют вырожденным узлом.
Неразветвленная и разветвленная
Внутренние и внешние
Для создания упорядоченного движения электронов, необходимо определить разность потенциалов между какими-либо отдельно взятыми участками цепи. Это обеспечивается при подключении напряжения в виде источника питания, называемым внутренней электрической цепью. Остальные компоненты цепи образуют внешнюю цепь. Для задания движения зарядов в источнике питания против направления поля, требуется приложить сторонние силы, в частности:
- Выход вторичной обмотки трансформатора.
- Батарея (гальванический источник).
- Обмотка генератора.
Внешние силы, создающие движение электронов, называются электродвижущими, и они характеризуются работой, затраченной источником на перемещение единицы заряда.
Внешняя и внутренняя часть цепи
Активные и пассивные
Элементы в составе электрических цепей существуют в формате активности и пассивности. В качестве активных считаются источники электроэнергии.
Базовым параметром активных участков цепи выступает их способность отдавать энергию. Источники тока вместе с ЭДС называют идеальными для электрической энергии, что обусловлено отсутствием потери энергии, поскольку их проводимость и сопротивление считаются бесконечными:
I2 х 0 = 0
Активные элементы ЭЦ
Элементами, называемыми пассивными, считают разновидности потребителей и накопителей электроэнергии. На практике специалисты применяют многополюсный прибор, функционирующий на базе двухполюсных элементов.
Все активные элементы можно определить как в независимом, так и в зависимом порядке. Первый вариант является определением источника тока и напряжения. Вторая категория рассматривается при условии зависимости указанных величин от параметров напряжения и тока. Типичными представителями выступают электролампы и транзисторы. Их функционирование происходит в режиме линейности.
Пассивные элементы ЭЦ
Главные пассивные участки электроцепи представляют резисторы, индуктивные катушки и конденсаторы, с помощью которых осуществляется регулирование параметров силы тока и величины напряжения на отдельно взятых элементах. Резистивный показатель сопротивления относят к особым свойствам элементам. Его базовым критерием служит необратимое энергетическое рассеивание. Значение электротехники определяется по следующей формуле:
Вам это будет интересно Как заряжается конденсатор
u = iR
i = Gu
При этом R представляет собой сопротивление (измеряется в Омах), а выступает проводимостью (единица измерения – сименсы). Данные величины можно вычислить по формуле:
R = 1:G
Индуктивность – это коэффициент пропорциональности. Конденсатор имеет свойство накопления энергии электрического поля. Линейная ёмкость определяет прямопропорциональную зависимость на основе заряда и напряжения. В таком случае, формула выглядит следующим образом:
q = Cu
Из каких элементов состоит электрическая цепь
Новички нередко задаются вопросом, из каких важных элементов состоит электрическая цепь. Такими составляющими являются:
- Источник тока,
- Нагрузка,
- Проводник.
В состав могут в том числе входить такие элементы, как устройства коммутации, а также приборы защиты.
Условные обозначения электроустройств
Для возникновения тока, необходимо соединить две точки, одна из которых имеет избыток электронов по сравнению с другой. Другими словами, необходимо создать разность потенциалов между этими двумя точками. Как раз для получения разности потенциалов в цепи применяется источник тока.
Важно! Нагрузкой считается любой потребитель электрической энергии. Этот фактор оказывает сопротивление электрическому току и от величины сопротивления нагрузки зависит величина тока. Ток от источника энергии к нагрузке течёт по проводникам. В качестве кабеля можно использовать материалы с наименьшим сопротивлением (медь, серебро, золото).
Схема электрической цепи
Электрическая цепь, её графическое изображение, условные обозначения составляющих её элементов, а также символы представляют собой классическую схему расчетной модели. Подобный тип по-другому принимают, как эквивалентную схему замещения. По возможности, изображённая электротехника на схеме электрических цепей показывает весь процесс. Каждый реальный элемент цепи при проведении расчета заменяется элементами схемы.
Схема ЭЦ
В заключении следует отметить, что каждый элемент цепи, в зависимости от характера подключения и электротехнических свойств, может быть идентифицирован как источник энергии, либо как потребитель. Каждому участку на схеме ЭЦ соответствует проводник, либо конкретный прибор (трансформатор, выпрямитель, инвертор и другое электрооборудование). Только после правильного прочтения электрической схемы специалист может обеспечить её работоспособность.
Источник: https://rusenergetics.ru/polezno-znat/elektricheskaya-tsep
Электрическая цепь
Электрическая цепь – набор разнородных элементов, соединенных проводниками, предназначенный для протекания тока. Ассортимент составляющих широкий. Элементы выпускают линейные, нелинейные, активные, пассивные. Классификация бессильна охватить возможные случаи.
Состав электрической цепи
Электрическая цепь включает (в общем случае): источник питания, рубильник (выключатель), соединительные провода, потребителей. Обязательно сформируйте замкнутый контур. В противном случае по цепи не сможет течь ток. Электрическими не принято называть контуры заземления, зануления. Однако по сути считаются таковыми, иногда здесь течет ток. Замыкание контура при заземлении, занулении обеспечивается посредством грунта.
Источники питания. Внутренняя, внешняя электрическая цепь
Для образования упорядоченного движения носителей заряда, формирующего ток, потрудитесь создать разность потенциалов на концах участка. Достигается подключением источника питания, который в физике принято называть внутренней электрической цепью. В противовес прочим элементам, составляющим внешнюю. В источнике питания заряды движутся против направления поля. Достигается приложением сторонних сил:
- Обмотка генератора.
- Гальванический источник питания (батарейка).
- Выход трансформатора.
Напряжение, формируемое на концах участка электрической цепи, бывает переменным, постоянным. Сообразно в технике принято контуры делить соответствующим образом. Электрическая цепь предназначена для протекания постоянного, переменного тока. Упрощенное понимание, закон изменения упорядоченного движения носителей заряда воспринимается сложным. С трудом понимаем, переменный в цепи ток или постоянный.
Помимо упорядоченного движения носители характеризуются хаотичным тепловым движением. Скорость (интенсивность) определена температурой, родом материала, некоторыми другими факторами. В образовании электрического тока вид движения участия фактически не принимает.
Род тока определен источником, характером внешней электрической цепи. Гальванический элемент дает постоянное напряжение, обмотки (трансформаторы, генераторы) – переменное. Связано с протекающими в источнике питания процессами.
Сторонние силы, обеспечивающие движения зарядов, называют электродвижущими. Численно ЭДС характеризуется работой, совершаемой генератором для перемещения единичного заряда. Измеряется вольтами. На практике для расчета цепей удобно делить источники питания двумя классами:
- Источники напряжения (ЭДС).
- Источники тока.
В действительности неизвестны, имитацию пытаются создать практики. В розетке ожидаем увидеть 230 вольт (220 вольт по старым нормативам). Причем ГОСТ 13109 однозначно устанавливает пределы отклонения параметров от нормы. В быту пользуемся источником напряжения. Параметр нормируется. Величина тока не играет значения. Напряжение подстанции круглые сутки стремятся сделать постоянным вне зависимости от текущего запроса потребителей.
В противовес источник тока поддерживает заданный закон упорядоченного движения носителей заряда. Значение напряжения роли не играет. Ярким примером подобного рода устройств выступает сварочный аппарат на базе инвертора. Каждый знает: диаметр электрода прочно связан с толщиной металла, прочими факторами. Чтобы процесс сварки шел правильно, приходится с высокой степенью постоянства поддерживать ток. Задачу решает электронный блок на основе инвертора.
Ток, напряжение бывают постоянными, переменными. Закон изменения параметра роли не играет. Неважно, подключать ли электрическую цепь к источнику постоянного, переменного напряжения. Однако важно выдержать правильный размер параметра. К примеру, действующее значение ЭДС.
Элементы цепи
Выключатель
Рубильник позволит присоединить источник питания к проводам, потребителю. Каждый (за редким исключением) пользовался настенным выключателем. При замыкании-размыкании электрической цепи возникает искра. Объясняется наличием сопротивления емкостного типа. Для предотвращения искрения цепь дополняется дросселем, рубильник сформирован контакторами специального типа. Придуманы прочие технические решения, к примеру, катушка Тесла.
Провода
В технике провода изготавливают медные, алюминиевые. Связано с низким удельным сопротивлением металлов. Цена невысока. Выделяющееся на проводниках тепло определяется двумя параметрами:
- Сопротивление участка цепи.
- Электрический ток.
Понятно, второй параметр определяется нуждами потребителей. Поставщик стремится влиять на первый. Удельное сопротивление проводника предвидится по возможности низким. Ученых давно интересует явление сверхпроводимости. Металлы при понижении температуры теряют сопротивление. Уменьшаются потери. Среди полупроводников встречаются образцы с положительным и отрицательным температурным коэффициентом сопротивления. Абсолютное значение параметра металлов на порядки ниже.
Проблема с алюминием, медью проста: при протекании электрического тока в цепи температура растет. Повышается сопротивление участка, дополнительно усугубляя ситуацию. Получается замкнутый круг. Ученые считают: затруднение допустимо исправить, заручившись помощью явления сверхпроводимости.
Металл при некоторой низкой температуре резко, рывком снижает сопротивление, достигая нуля (выше рубежа график понижается плавно со скоростью 1/273 1/град). Проблема практического применения в том, что значения, провоцирующие скачок, низкие. Например, для свинца рубеж составляет 7,2 К. Экстремально низкая отрицательная температура по шкале Цельсия.
Ученые видят решение проблемы в открытии материалов, демонстрирующих явление сверхпроводимости при комнатных температурах. Тогда большие токи удастся передавать потребителям, избежав потерь. В электрической цепи, сформированной сверхпроводниками, заряды способны циркулировать бесконечно длительное время без внешней подпитки источником.
https://www.youtube.com/watch?v=bR_cJDOMjxo
Новое явление обнаружил Хейке Камерлинг-Оннес в 1911 году, исследуя образцы ртути, охлаждаемой до весьма низких температур. На четырех градусах Кельвина сопротивление проволоки стало нулевым, до скачка снижалось, плавно следуя прямой. Стало ясно: обнаружено новое состояние материала. Позже явление сверхпроводимости продемонстрировано на образцах других металлов. Показано: эффект разрушается помещением подопытного вещества в сильное магнитное поле. Самой высокой пороговой температурой среди металлов похвастается технеций (11,3 К).
Явление сверхпроводимости при комнатных температурах
У искусственных материалов показатели намного выше. С 1986 года ученые исследуют разнообразные керамики. Последним подтвержденным фактом считаем сведения о наличии композитных материалов на основе окислов ртути с температурой перехода в новое состояние на границе 140 К. Дальнейшие работы по очевидным соображениям засекречены.
Потребители
Под потребителем электрической цепи понимается не относящееся к элементам, перечисленным выше. Полезной нагрузкой служат обыкновенная лампочка накала, спираль нагревательного прибора, электрический двигатель. Параметры цепи очень сильно зависят именно от потребителей. Например, обмотки трансформаторов наделены сильно выраженным индуктивным сопротивлением. Негативно сказывается на передаче энергии от источника.
Не только ток меняет направление. Иногда утверждение касается мощности. Энергия начинает циркулировать туда-сюда, направляясь к источнику питания, обратно во внешнюю цепь. Реактивная мощность бессильна выполнить полезную работу, разогревает проводники цепи, искажает форму полезного сигнала. Промышленникам, ведущим учет полного потребления, рекомендуется параллельно двигателям включать компенсирующие конденсаторы. Индуктивное сопротивление компенсируется емкостным, реактивная мощность замыкается внутри потребительского сегмента, избегая выходить наружу, не выделяя лишнее тепло на кабелях сети.
Нужно отметить важное свойство индуктивных потребителей: потребляют энергию. Электрический ток становится магнитным полем, передается далее. В двигателях колебания вектора напряженности, создаваемые обмоткой, позволят совершать валу полезную работу. Чтобы показать происходящие траты энергии, схемы дополняют источниками ЭДС (тока), направление действия которых противоположно имеющему место быть во внутренней электрической цепи.
Передачи мощности через емкостную связь сегодня не изобретено. Однако приближенно считаем подобным случаем излучение радиоволны в эфир. Простейший вибратор Герца часто представляют колебательным контуром, в котором обкладки конденсатора разведены в стороны.
Шаг позволит образовываться электромагнитной волне, уносимой эфиром. Что касается передачи больших мощностей, соответствующие планы строил Никола Тесла, каждый видел на фото, стилистическом изображении башню Ворденклиф, напоминающую формой подберезовик с прямой ножкой.
При помощи сети сооружений предполагалось снабжать энергией путем беспроводной связи промышленность, заводы, фабрики.
В курсе электроники преимущественно рассматриваются приемные устройства. Между клеммами антенны передача волны через эфир обозначается схематично источником переменного напряжения малой мощности. Уловленная ЭДС усиливается каскадами, включающими резонансные контуры. Электроника, как никакая другая область техники, включает неимоверное разнообразие потребителей. Упрощенно делится на два класса:
- Активные потребители требуют для корректной работы снабжения электрической энергией. Как правило, не могут питаться непосредственно основной сетью. Микросхемы, дискретные активные элементы: транзисторы, тиристоры. Иными словами, электронные ключи. Электродвигатели принципиально отличаются, снабжаясь питанием входной сети.
- Пассивные потребители не требуют внешнего питания. Однако пропускать ток могут причудливым образом. Некоторые тиристоры открываются при достижении напряжением определенного значения. Следовательно, считаются пассивными приборами, обладают нелинейной характеристикой. К этому семейству относятся диоды, пропускающие ток в одном направлении (демонстрируют вентильные свойства).
Пассивными потребителями являются всевозможные сопротивления, конденсаторы, дроссели (катушки индуктивности). При помощи элементов электрическая цепь приобретает необычные качества. Резонансные контуры конденсаторов, индуктивностей используют фильтрами волн различной частоты.
Источник: https://VashTehnik.ru/enciklopediya/elektricheskaya-cep.html
Внутренняя и внешняя электрическая цепь
Определение 1
Электрической цепью в физике считается определенный комплекс разного рода элементов, соединенных между собой проводниками, основным назначением которого является протекание тока.
Ассортимент элементов электрической цепи достаточно широк. Так, они бывают:
- линейного;
- нелинейного;
- пассивного;
- активного типов.
Элементы электрической цепи
Каждая электрическая цепь будет включать в себя разноплановые объекты и устройства, формирующие специальные пути для прохождения электротока. С целью детального описания электромагнитных процессов, осуществляемых в каждом из них, на практике применяют такие понятия, как:
- электродвижущая сила (представляет скалярную величину, характеризующую работу любых сил неэлектрического происхождения, функционирующих в квазистационарных цепях тока переменного или постоянного типа);
- напряжение (считается физической величиной, равнозначной отношению работы электрического поля, которая будет затрачиваться на перенос электрозаряда из одной точки в другую (то есть между полюсами) к указанному заряду);
- ток (характеризуется направленным потоком заряженных частиц).
- Курсовая работа 420 руб.
- Реферат 260 руб.
- Контрольная работа 190 руб.
Замечание 1
Согласно условному распределению, все элементы электрической цепи подразделяются на три составные части. Первую представляют источники питания, вырабатывающие электроэнергию. Вторая характеризуется элементами, преобразующими электричество в иные виды энергии, больше известные в виде приемников. Третья часть составляют передающие устройства – провода и прочие установки, отвечающие за обеспечение соответствующего качества и уровня напряжения.
Внутренние и внешние части электрической цепи
Составными простейшей электрической цепи являются: источник, один или несколько приемников электроэнергии с последовательным соединением и соединительные провода.
Источник питания контролирует образование внутренней части цепи, а потребитель, в то же время, формирует ее внешнюю часть (в совокупности с измерительными приборами, коммутирующими аппаратами и соединительными проводами).
Замечание 2
Внешний участок (иными словами, внешняя цепь) будет состоять из одного или нескольких приемников электроэнергии, а также из соединительных проводов и разных вспомогательных устройств, включенных в такую цепь. Наряду с тем, внутренний участок (называется также внутренняя цепь) — это и есть сам источник.
При составлении расчетных схем элементы электроцепи, обладающие некоторым сопротивлением, (электролампы, например, или электронагревательные приборы) изображаются схематически в формате сосредоточенных в определенном месте схемы резисторов с сопротивлением. То же касается и элементов с индуктивностью (обмотки генераторов, трансформаторов и электродвигателей) и емкостью (трансформаторы).
На расчетных схемах их изображение будет сосредоточено в соответствующих местах конденсаторов и катушек индуктивности. Источниками электроэнергии в схеме электрической цепи зачастую выступают идеализированные источники с внутренним сопротивлением $Ro=0$. С целью учета внутреннего сопротивления реального источника, в схему вводится изображение резистора с сопротивлением $Ro$ или ставится обозначение $Ro$ рядом с условным обозначением источника.
Вспомогательным элементам электроцепей в виде включающих и выключающих аппаратов, защитных устройств, некоторых электроизмерительных приборов часто свойственно малое сопротивление, при этом они практически не оказывают воздействия на значения напряжений и токов. По этой причине они во внимание не принимаются и не указываются на схемах.
В момент образования замкнутого контура во внутренней и внешней части цепи, в ней фиксируют возникновение электрического тока. Силу тока, таким образом, определяет количество электричества (заряда), проходящего за единицу времени через поперечное сечение проводника:
- $I=\frac{q}{t}$ (для постоянного тока);
- $i=\frac{dq}{dt}$ (для переменного тока).
Прохождение в цепи электрического тока взаимосвязано с процессами преобразования энергии в каждом ее элементе, которые происходят в непрерывном режиме. В рамках процесса преобразования иных видов энергии в электрическую мы наблюдаем возбуждение в источнике питания электродвижущей силы (ЭДС).
Внешняя цепь, равно как и сам источник энергии, имеют определенное сопротивление для прохождения электрического тока. Физическую природу сопротивления Ома $R$ представляет – тепловое движение атомов и молекул тела (свойство сверхпроводимости). Величина сопротивления будет зависимой от материала, а также размеров и формы проводника:
$R=P\frac{I}{S}$
Обратная сопротивлению величина называется проводимостью:
$P=\frac{1}{R}$
Напряжение, электродвижущая сила, ток и сопротивление связывает в простейшей цепи закон Ома, который выражается формулой:
$I=\frac{U}{R}$
Основные законы для электрических цепей
При анализе цепей сложного и простого типа широко применимы законы Кирхгофа, Ома, Джоуля Ленца, Фарадея, Ампера. Законы Ома существуют в двух вариациях: для участка цепи и полной цепи. Ток в участке цепи будет прямо пропорциональным напряжению на таком участке и обратно пропорциональным сопротивлению на нем, то есть:
$U=IR$
При произведении тока участка цепи на величину сопротивления возникает падение на данном участке. Ток в электроцепи будет прямо пропорционален ЭДС источника и обратно пропорциональным сумме сопротивлений, состоящим из внутреннего и внешнего типа сопротивления источника питания. Таким образом:
$I=\frac{E}{R+r}$
Закон Джоуля-Ленца позволяет определять количество тепловой энергии, которое будет выделяться на сопротивление при протекании по нему электрического тока. Согласно формуле, это записывается так:
$w=I2 rt$
Законом электромагнитной индукции Фарадея устанавливается связь между:
- индуктированием ЭДС в электроцепях и изменением магнитного потока, пронизывающего ограниченную контуром цепи поверхность;
- индуктированием ЭДС в проводнике в формате пересечения им магнитного поля.
В соответствии с вышеуказанным законом, ЭДС, которая индуцируется в цепи при изменении магнитного потока $Ф$, проходящего через ограниченную контуром поверхность, равнозначна скорости изменения магнитного потока, которая берется с отрицательным знаком, то есть формула выглядит так:
$E=-\frac{dф}{dt}$
Под эквивалентными преобразованиями понимается замена участков электрической цепи, содержащая последовательно и параллельно соединенные несколько элементов посредством одного элемента. При этом следствием такой замены становится неизменность общего тока и напряжения цепи.
В качестве основной особенности последовательного соединения выступает наличие общего тока, равного по значению для всех элементов (включая также и последовательные). Это, в свою очередь, способствует прямой пропорциональности напряжения сопротивлению участка цепи на каждом из включенных последовательно элементов.
Источник: https://spravochnick.ru/fizika/elektricheskie_cepi_-_chto_eto/vnutrennyaya_i_vneshnyaya_elektricheskaya_cep/