Что называется точечным источником света?

Содержание

Источники света

Что называется точечным источником света?

Определение 1

Источником света называют тело, излучающее энергию в световом диапазоне.

Классификацию источников света можно проводить в зависимости от различных их характеристик. Так в физике важным является деление источников света на точечные и непрерывные (модели источников света).

Возможно деление на естественные и искусственные источники света. К естественным источникам относят: Солнце, звезды, атмосферные электрические разряды и т.д. Искусственными источниками света считают: пламя, разного рода лампы, светодиоды, лазеры. Искусственные источники света делят в зависимости от вида энергии, которая переходит в излучение.

Источники света подразделяют на:

  • тепловые источники (свет в которых появляется в результате их нагрева до высоких температур);
  • люминесцентные источники (световое излучение в которых, возникает за счет превращения различных видов энергии, отличной от тепловой).

Также искусственные источники света могут делить в зависимости от их конструктивных особенностей.

  • Курсовая работа 440 руб.
  • Реферат 270 руб.
  • Контрольная работа 250 руб.

Характеристики источников света. Сила света

Определение 2

Точечным называют источник света, размерами которого можно пренебречь, в сравнении с расстоянием от источника до места наблюдения. В оптически однородной и изотропной среде волны, которые излучает точечный источник, являются сферическими.

Определение 3

Для того чтобы охарактеризовать точечный источник применяют такое понятие как сила света ($I$), которую определяют как:

\[I=\frac{dФ}{d\Omega }\left(1\right),\]

где $dФ$ — световой поток, который излучается источником в пределах телесного угла $d\Omega $ . Если рассматривать сферическую систему координат, то можно сказать, что в общем случае сила света зависит от полярного ($\vartheta$) и азимутального ($\varphi $) углов ($I=I(\vartheta,\varphi )$).

Определение 4

Источник света носит название изотропного, если его сила света не зависит от направления. Для изотропного источника света можно записать, что:

\[I=\frac{Ф}{4\pi }\left(2\right),\]

где Ф — суммарный световой поток, который излучает источник по всем направлениям. Величину силы источника, которая определяется как (2) еще называют средней сферической силой света источника.

Если источник света нельзя считать точечным (протяженный источник), то используют понятие силы света элемента его поверхности ($dS$). В таком случае в формуле (1) под величиной $dФ$ понимают световой поток, который излучает элемент поверхности источника ($dS$) в пределах телесного угла ($d\Omega $).

Основной единицей измерения силы света в $СИ$ является кандела ($кд$) ( старое — свеча ($св$)). $1 кд$ излучает световой эталон в виде абсолютно черного тела при температуре $T=2046,6 K$ (температура затвердевания чистой платины) и давлении $101325 Па$.

Световой поток

Световой поток, который посылается точечным источником в телесный угол $d\Omega ,$ определяется выражением:

Соответственно, полный световой поток, который исходит от источника, равен интегралу по полному телесному углу $4\pi $:

Основная единица измерения светового потокалюмен ($лм$), который равен световому потоку, который испускает источник в $1 кд$ внутрь телесного угла $1 стерадиан$.

Освещенность

Определение 5

Величина ($E$) равная:

\[E=\frac{dФ_{pad}}{dS}\left(5\right)\]

называется освещенностью. В выражении (5) $dФ_{pad}$ — величина светового потока, который падает на элемент поверхности $dS.$ Освещенность измеряется с СИ в люксах (лк).

\[1лк=\frac{1лм}{1м2}\left(6\right),\]

при равномерном распределении потока по поверхности.

Освещенность, которую создает точечный источник можно вычислить как:

где r- расстояние от источника до поверхности, $\alpha $ — угол между нормалью к поверхности и направлением на источник.

Светимость

Протяженный источник света характеризуют светимостью ($R$) его участков. Она характеризует излучение (отражение) света выделенным элементом поверхности по всем направлениям. Определяется она как:

где ${dФ}_{isp}$- поток, который испускает элемент поверхности источника ($dS$) по всем направлениям в пределах $0\le \vartheta \le \frac{\pi }{2}$, где $\vartheta$ — угол, который образует выделенное направление с внешней нормалью к поверхности.

Светимость способна появляться из-за отражения поверхностью падающего на нее света. В таком случае под ${dФ}_{isp}$ следует понимать в выражении (8) поток, который отражается элементарной поверхностью $dS\ $по всем направлениям.

Светимость измеряется в $люксах$.

Яркость

Яркость ($B$) используют для характеристики излучения (отражения) света в выделенном направлении. Направление при этом задается полярным углом ($\vartheta$), который откладывается от внешней нормали ($\overrightarrow{n}$) к излучающей площадке и азимутальным углом ($\varphi $). Данная физическая величина определяется как:

где $dS$ — элементарная светящаяся площадка. В общем случае $B=B(\vartheta,\varphi )$.

Определение 6

Источники света, яркость которых не изменяется в зависимости от направления, называют ламбертовскими (или косинусными, подчиняющимися закону Ламберта). Для ламбертовских светильников $dI$ элементарной площадки пропорциональна $cos \vartheta.$

Светимость и яркость связаны соотношением:

Единица яркости $кандела$ на квадратный метр ($\frac{кд}{м2}$).

Пример 1

Задание: Найдите световой поток, который излучает элементарная поверхность $dS$ внутрь конуса, ось которого перпендикулярна выделенному элементу. Угол конуса равен $\vartheta_0$. Считать, что светящаяся поверхность подчиняется закону Ламберта и ее яркость равна $В$.

Решение:

За основу решения задачи примем определение яркости и из него выразим элемент светового потока:

\[B=\frac{dФ}{d\Omega dScos\vartheta }\to dФ=Bd\Omega dScos\vartheta \left(1.1\right).\]

Элементарный телесный угол в сферических координатах равен:

\[d\Omega =sin\vartheta d\vartheta d\varphi \left(1.2\right).\]

Подставим выражение для телесного угла в выражение (1.1), получим:

\[dФ=Bsin\vartheta d\vartheta d\varphi dScos\vartheta \left(1.3\right).\]

Найдем полный световой поток интегрированием выражения (1.3):

\[Ф=BdS\int\limits{\vartheta_0}_0{sin\vartheta cos\vartheta d\vartheta }\int\limits{2\pi }_0{d\varphi =\pi ВdS}sin2 \vartheta_0.\]

Ответ: $Ф=\pi ВdSsin2\vartheta_0.$

Пример 2

Задание: Яркость однородного светящегося диска радиуса $r$ изменяется в соответствии с законом $B=B_0cos\vartheta,$ где $B_0=const, \vartheta\ —\ $угол с нормалью к поверхности. Каков световой поток (Ф), который испускает диск?

Решение:

Элемент светового потока, используя уравнение из условий задачи для ярости выразим как

\[dФ=Bd\Omega dScos\vartheta =B_0{cos\vartheta}2d\Omega dS\left(2.1\right),\]

где элементарный телесный угол в сферических координатах равен:

\[d\Omega =sin\vartheta d\vartheta d\varphi \left(2.2\right).\]

Световой поток найдем как интеграл от выражения (2.1) при использовании (2.2):

\[Ф=B_0dS{\int\limits{\frac{\pi }{2}}_0{sin\vartheta}cos2}\vartheta d\vartheta \int\limits{2\pi }_0{d\varphi =}2\pi B_0dS{\int\limits{\frac{\pi }{2}}_0{sin\vartheta}cos2}\vartheta d\vartheta=2\pi B_0dS{\int\limits{\frac{\pi }{2}}_0{d(-cos\vartheta)}cos2}\vartheta=\frac{2}{3}\pi B_0dS=\frac{2}{3}B_0{\pi }2r2.\]

Ответ: $Ф=\frac{2}{3}B_0{\pi }2r2.$

Источник: https://spravochnick.ru/fizika/optika/istochniki_sveta/

Сила света

Определение 2

Точечный источник света – это такой световой источник, размеры которого можно не принимать во внимание, по сравнению с расстоянием от источника до места наблюдения. В оптически однородной и изотропной среде волны, излучаемые точечным источником, являются сферическими.

Определение 3

Для характеристики точечного источника используют понятие силы света (I), которая определяется как:

I=dΦdΩ (1),

где dФ – это световой поток, излучаемый источником в пределах телесного угла dΩ. При рассмотрении сферической системы координат можно сказать, что в общем-то сила света зависит от полярного (ν) и азимутального φ углов I=I ν, φ.

Определение 4

Источник света называется изотропным, если на его силу света не оказывает влияние направление. Для изотропного источника света запишем:

I=Φ4π (2),

где Ф – это суммарный световой поток, излучаемый источником во всех направлениях. Величина силы источника, которая вычисляется как (2), также называется средней сферической силой света источника.

Если источник света не является точечным (протяженный источник), тогда применяют понятие силы света элемента его поверхности (dS). В данном случае в формуле (1) величина dФ – это световой поток, излучаемый элементом поверхности источника (dS) в пределах телесного угла (dΩ).

Основная единица измерения силы света в системе измерения – кандела (кд) (старое название – свеча (св)). 1кд излучает световой эталон как абсолютно черное тело при температуре T=2046,6 K (температура, при которой затвердевает чистая платина) и давлении 101325 Па.

Световой поток

Определение 5

Основной единицей измерения светового потока является люмен (лм), который равняется световому потоку, испускаемому источником в 1 кд внутрь телесного угла 1 стерадиан.

Освещенность

Определение 6

Величина (E), равная E=dΦpaddS (5), называется освещенностью. В выражении (5) dΦpad – это величина светового потока, падающего на элемент поверхности dS. Освещенность измеряется с системе измерения в люксах (лк) 1 лк=1 лм1 м2 (6), при равномерном распределении потока по поверхности.

Светимость

Протяженный источник света характеризуют светимостью (R) его участков. Она описывает излучение (отражение) света выделенным элементом поверхности во всех направлениях.

Светимость проявляется из-за отражения поверхностью падающего на нее светового потока. Тогда под dΦisp понимают в выражении (8) поток, отражаемый элементарной поверхностью dS во всех направлениях.

Светимость измеряется в люксах.

Яркость

Яркость (B) используют для описания излучения (отражения) света в заданном направлении. Направление причем задается полярным углом ν, который откладывают от внешней нормали n→ к излучающей площадке и азимутальным углом φ.

Определение 7

Ламбертовскими источниками света (или косинусные, подчиняющиеся закону Ламберта), называются источники, яркость которых не меняется в зависимости от направления. Для ламбертовских светильников dI элементарной площадки пропорциональна cos ν.

Единица яркости кандела на квадратный метр кдм2.

Пример 1

Необходимо найти световой поток, излучаемый элементарной поверхностью dS внутрь конуса, ось которого расположена перпендикулярно выделенному элементу. Угол конуса равен ν0. Будем считать, что светящаяся поверхность подчинена закону Ламберта и ее яркость равняется В.

Решение

Для решения задачи используем определение яркости и из него выделим элемент светового потока:

B=dΦdΩdScos ν→dΦ=BdΩdScos ν (1.1).

Элементарный телесный угол в сферических координатах равняется:

dΩ=sinνdνdφ (1.2).

Подставим выражение для телесного угла в выражение (1.1), получаем:

dΦ=BsinνdνdφdScosν (1.3).

Определим полный световой поток интегрированием выражения (1.3):

Φ=BdS∫0v0sinνcosνdν∫02πdφ=πBdSsin2ν0.

Ответ: Φ=πBdSsin2ν0.

Пример 2

Яркость однородного светящегося диска радиуса r меняется по закону B=B0cosν, B0=const, ν– это угол с нормалью к поверхности. Необходимо найти световой поток (Ф), испускаемый диском.

Решение

Выразим элемент светового потока с помощью уравнения из условий задачи для ярости как:

dΦ=BdΩdScosν=B0cosν2dΩdS (2.1),

где элементарный телесный угол в сферических координатах равняется:

dΩ=sinνdνdφ (2.2).

Световой поток вычислим как интеграл от выражения (2.1) при использовании (2.2):

Φ=B0dS∫0π2sinνcos2νdν∫0π2dφ=2πB0dS∫0π2d(-cos ν)cos2ν=23πB0dS==23B0π2r2.

Ответ: Φ=23B0π2r2.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Не получается написать работу самому?

Доверь это кандидату наук!

Источник: https://Zaochnik.com/spravochnik/fizika/volnovaja-optika/istochniki-sveta/

Примеры точечных источников света

Что называется точечным источником света?

Прочитай приведенный ниже текст, в котором есть пропущенные слова. семья объединяет людей, которые являются кровными

Прочитай приведенный ниже текст, в котором есть пропущенные слова. семья объединяет людей, которые являются кровными

Page 3

Прочитай приведенный ниже текст, в котором есть пропущенные слова. семья объединяет людей, которые являются кровными

Page 4

Прочитай приведенный ниже текст, в котором есть пропущенные слова. семья объединяет людей, которые являются кровными

Page 5

Прочитай приведенный ниже текст, в котором есть пропущенные слова. семья объединяет людей, которые являются кровными

Page 6

Задача на теплоемкость. 8 класс.
Куску льда массой 4 кг, имеющему температуру 0 градусов сообщили энергию 1480 кДж. Какая установилась окончательная температура?

Удельная теплоемкость льда — 2100 Дж на кг.
Формула : Q= cm( температура (t) начальная минус t конечная) 

Page 7

Прочитай приведенный ниже текст, в котором есть пропущенные слова. семья объединяет людей, которые являются кровными

Page 8

Прочитай приведенный ниже текст, в котором есть пропущенные слова. семья объединяет людей, которые являются кровными

Page 9

 Каково механическое напряжение, возникающее в стальной проволоке при ее относительной удли­ненности 2 ? Модуль упругости стали равен  Па. 

Page 10

Прочитай приведенный ниже текст, в котором есть пропущенные слова. семья объединяет людей, которые являются кровными

Page 11

Прочитай приведенный ниже текст, в котором есть пропущенные слова. семья объединяет людей, которые являются кровными

Page 12

Три резистора сопротивлением R1=1 om,R2=1 om,R3=2 om соединенны последовательно найти отношение напряжений U1/U2 и U2/U3

Page 13

Прочитай приведенный ниже текст, в котором есть пропущенные слова. семья объединяет людей, которые являются кровными

Page 14

Прочитай приведенный ниже текст, в котором есть пропущенные слова. семья объединяет людей, которые являются кровными

Page 15

 Медное тело M из мензурки A (рис. 1) перенесли в мензурку B с водой. Уровень воды в мензурке поднялся (рис. 2).

 Определите удельную теплоемкость меди. Полученный результат сравните с табличным и объясните причину погрешности (ошибки).

Читайте также  Сломался фильтр в стиральной машине что делать?

 СМОТРИТЕ ВЛОЖЕНИЯ.

Page 16

Прочитай приведенный ниже текст, в котором есть пропущенные слова. семья объединяет людей, которые являются кровными

Page 17

«алюминиевый чайник массой 400г в котором находиться 2 кг воды про 10 цельсия помещают на газовую горелку с кпд 40% какова мощность горелки если через 10 минут вода закипела . причем 20г воды выкипело».

Page 18

ЭДС элемента 6 В. При внешнем сопротивлении, равном 1,1 Ом, сила тока в цепи равна 3 А. Найдите внутреннее сопротивление элемента. Рассчитайте силу тока коротко замыкания.

Page 19

Прочитай приведенный ниже текст, в котором есть пропущенные слова. семья объединяет людей, которые являются кровными

Диск радиусом R вращается вокруг своей оси с постоянной частотой. Начертите график зависимости модуля линейной скорости V точек диска от расстояния R до его центра.

1

Между двумя пластинами, расположенными горизонтально в вакууме на расстоянии 4,8мм друг от друга, движется отрицательно заряженная шарообразная капелька масла радиусом 1,4*10-5м с ускорением 5,8 м/с2, направленным вниз. Сколько «избыточных» электронов имеет капелька, если разность потенциалов между пластинами равна 1кВ? Плотность масла 0,8*103кг/м3

2

Определите  энергию, которой  обладает  пружина  жесткостью  40Н/м  в  момент, когда  она  сообщает  телу  массой  2  кг  ускорение, модуль  которого  1,2 м/с2.

3

Прочитай приведенный ниже текст, в котором есть пропущенные слова. семья объединяет людей, которые являются кровными

4

Прочитай приведенный ниже текст, в котором есть пропущенные слова. семья объединяет людей, которые являются кровными

5

Точечное тело начинает двигаться  по горизонтальной плоскости из состояния покоя с постоянным ускорением в положительном направлении горизонтальной оси ОХ. Во сколько раз путь n, пройденный этим телом за 5 секунд, больше пути, пройденного им за вторую секунду?

6

имеются два последовательно соединенных резисторов. К ним приложено напряжение 85 В напряжение на втором резисторе  40 В сила тока в нем 2 А определите напряжение на первом резисторе силу тока в цепи и в первом резисторе.

Источник: https://znanija.site/fizika/2322084.html

Основные характеристики источников света:

·         номинальное напряжение питающей сети U, B;

·         электрическая мощность W, Вт;

·         световой поток Ф, лм;

·         световая отдача (отношение светового потока лампы к ее мощности) лм/Вт;

·         срок службы t, ч;

·         Цветовая температура Tc, К.

Лампы накаливания

Лампа накаливания — источник света, в котором преобразование электрической энергии в световую происходит в результате накаливания электрическим током тугоплавкого проводника (вольфрамовой нити). Эти приборы предназначаются для бытового, местного и специального освещения. Последние, как правило, отличаются внешним видом — цветом и формой колбы.

Коэффициент полезного действия (КПД) ламп накаливания составляет около 5-10%, такая доля потребляемой электроэнергии преобразуется в видимый свет, а основная ее часть превращается в тепло. Любые лампы накаливания состоят из одинаковых основных элементов.

Но их размеры, форма и размещение могут сильно отличаться, поэтому различные конструкции не похожи друг на друга и имеют разные характеристики.

Существуют лампы, колбы которых наполнены криптоном или аргоном. Криптоновые обычно имеют форму «грибка». Они меньше по размеру, но обеспечивают больший (примерно на 10%) световой поток по сравнению с аргоновыми. Лампы с шаровой колбой предназначены для светильников, служащих декоративными элементами; с колбой в форме трубки — для подсветки зеркал в стенных шкафах, ванных комнатах и т. д.

Лампы накаливания имеют световую отдачу от 7 до 17 лм/Вт и срок службы около 1000 часов. Они относятся к источникам света с теплой тональностью, поэтому создают погрешности при передаче сине-голубых, желтых и красных тонов. В интерьере, где требования к цветопередаче достаточно высоки, лучше использовать другие типы ламп.

Также не рекомендуется применять лампы накаливания для освещения больших площадей и для создания освещенности, превышающей уровень 1000 Лк, так как при этом выделяется много тепла и помещение «перегревается».

Несмотря на эти ограничения, такие приборы все еще остаются классическим и излюбленным источникам света.

Галогенные лампы накаливания

 Лампы накаливания со временем теряют яркость, и происходит это по простой причине: испаряющийся с нити накаливания вольфрам осаждается в виде темного налета на внутренних стенках колбы. Современные галогенные лампы не имеют этого недостатка благодаря добавлению в газ-наполнитель галогенных элементов (йода или брома).

Лампы бывают двух форм: трубчатые — c длинной спиралью, расположенной по оси кварцевой трубки, и капсульные — с компактным телом накала.

 Цоколи малогабаритных бытовых галогенных ламп могут быть резьбовыми (тип Е), которые подходят к обычным патронам, и штифтовые (тип G), которые требуют патронов другого типа.

 Световая отдача галогенных ламп составляет 14-30 лм/Вт. Они относятся к источникам с теплой тональностью, но спектр их излучения ближе к спектру белого света, чем у ламп накаливания. Благодаря этому прекрасно «передаются» цвета мебели и интерьера в теплой и нейтральной гамме, а также цвет лица человека.

 Галогенные лампы применяются повсюду. Лампы, имеющие цилиндрическую или свечеобразную колбу и рассчитанные на сетевое напряжение 220В, можно использовать вместо обычных ламп накаливания. Зеркальные лампы, рассчитанные на низкое напряжение, практически незаменимы при акцентированном освещении картин, а также жилых помещений.

Люминесцентные лампы

 Люминесцентные лампы (ЛЛ) — разрядные лампы низкого давления — представляют собой цилиндрическую трубку с электродами, в которую закачаны пары ртути. Эти лампы значительно меньше расходуют электроэнергию, чем лампы накаливания или даже галогенные лампы, а служат намного дольше (срок службы до 20 000 часов). Благодаря экономичности и долговечности эти лампы стали самыми распространенными источниками света.

В странах с мягким климатом люминесцентные лампы широко применяются в наружном освещении городов. В холодных районах их распространению мешает падение светового потока при низких температурах. Принцип их действия основан на свечении люминофора, нанесенного на стенки колбы. Электрическое поле между электродами лампы заставляет пары ртути выделять невидимое ультрафиолетовое излучение, а люминофор преобразует это излучение в видимый свет.

Подбирая сорт люминофора, можно изменять цветовую окраску испускаемого света.

Разрядные лампы высокого давления

 Принцип действия разрядных ламп высокого давления — свечение наполнителя в разрядной трубке под действием дуговых электрических разрядов.

Два основных разряда высокого давления, применяемых в лампах — ртутный и натриевый. Оба дают достаточно узкополосное излучение: ртутный — в голубой области спектра, натрий — в желтой, поэтому цветопередача ртутных (Ra=40-60) и особенно натриевых ламп (Ra=20-40) оставляет желать лучшего.

Добавление внутрь разрядной трубки ртутной лампы галогенидов различных металлов позволило создать новый класс источников света — металлогалогенные лампы (МГЛ), отличающиеся очень широким спектром излучения и прекрасными параметрами: высокая световая отдача (до 100 Лм/Вт), хорошая и отличная цветопередача Ra=80-98, широкий диапазон цветовых температур от 3000 К до 20000К, средний срок службы около 15 000 часов. МГЛ успешно применяются в архитектурном, ландшафтном, техническом и спортивном освещении. Еще более широко применяются натриевые лампы.

На сегодняшний день это один самых экономичных источников света благодаря высокой светоотдаче (до 150 Лм/Вт), большому сроку службы и демократичной цене. Огромное количество натриевых ламп используется для освещения автомобильных дорог. В Москве натриевые лампы часто из экономии используются для освещения пешеходных пространств, что не всегда уместно из-за проблем с цветопередачей.

Светодиоды

Светодиод — это полупроводниковый прибор, преобразующий электрический ток в световое излучение. Специально выращенные кристаллы дают минимальное потребление электроэнергии. Великолепные характеристики светодиодов (световая отдача до 120 Лм/Вт, цветопередача Ra=80-85, срок службы до 100 000 часов) уже обеспечили лидерство в светосигнальной аппаратуре, автомобильной и авиационной технике.

Светодиоды применяются в качестве индикаторов (индикатор включения на панели прибора, буквенно-цифровое табло). В больших уличных экранах и в бегущих строках применяется массив (кластер) светодиодов. Мощные светодиоды используются как источник света в фонарях и прожекторах. Так же они применяются в качестве подсветки жидкокристаллических экранов. Последние поколения этих источников света можно встретить в архитектурном и интерьерном освещении, а так же в бытовом и коммерческом.

Преимущества:

·         Высокий КПД.

·         Высокая механическая прочность, вибростойкость (отсутствие спирали и иных чувствительных составляющих).

·         Длительный срок службы.

·         Специфический спектральный состав излучения. Спектр довольно узкий. Для нужд индикации и передачи данных это — достоинство, но для освещения это недостаток. Более узкий спектр имеет только лазер.

·         Малый угол излучения — также может быть как достоинством, так и недостатком.

·         Безопасность — не требуются высокие напряжения.

·         Нечувствительность к низким и очень низким температурам. Однако, высокие температуры противопоказаны светодиоду, как и любым полупроводникам.

·         Отсутствие ядовитых составляющих (ртуть и др.) и, следовательно, лёгкость утилизации.

·         Недостаток — высокая цена.

·         Срок службы: среднее время полной выработки для светодиодов составляет 100000 часов, это в 100 раз больше ресурса лампочки накаливания.

Источник: https://svetoproekt.ru/articles/istochniki-sveta/

Виды источников света и их характеристики

Что называется точечным источником света?

20 июня 2015.
Категория: Лампы.

Пример источника света относящийся к первому классу. Лампа накаливания общего применения в прозрачной колбе
Пример источника света относящийся ко второму классу. Дуговая натриевая лампа в прозрачной колбе
Пример источника света относящийся к третьему классу. Лампа смешанного типа в колбе покрытой люминофором
Пример источника света относящийся к четвертому классу. Светодиодная лампа выполненная в форме лампы накаливания общего применения

Классификация источников света

Нет ни одной отрасли народного хозяйства, где бы ни использовалось искусственное освещение. Начало развития отрасли производства источников света было положено в 19 веке. Поводом для этого послужило изобретение дуговых ламп и ламп накаливания.

Тело, излучающее свет в результате преобразования энергии называется источником света. Почти все производимые в настоящее время типы источников света являются электрическими. Это значит, что для создания светового излучения в качестве первичной затрачиваемой энергии используют электрический ток. Источниками света считают приборы с излучением света не только в видимой части спектра (длинны волн 380 – 780 нм), но и ультрафиолетовой (10 – 380 нм) и инфракрасной (780 – 106 нм) областях спектра.

Различают следующие виды источников света: тепловые, люминесцентные и светодиодные.

Тепловые источники излучения являются самыми распространенными. Излучение в них появляется вследствие нагревания тела накала до темпер, при которых появляется не только тепловое излучение в инфракрасном спектре, но и наблюдается видимое излучение.

Люминесцентные источники излучения способны излучать свет не зависимо от того в каком состоянии находится их излучающее тело. Свечение в них возникает  через преобразование различных видов энергии непосредственно в оптическое излучение.

В светодиодных источниках излучения свет образуется в полупроводниковом кристалле при  переходе электронов с одного энергетического уровня на другой, в результате чего происходит излучение фотонов. Подробнее об этом можно прочесть в статье «Светодиодные лампы».

На основании изложенных различий источники света делят на четыре класса.

Тепловые

Сюда относят всевозможные типы ламп накаливания, включая галогенные, а также электрические инфракрасные нагреватели и  угольные дуги.

Люминесцентные

К ним относят следующие виды электрических ламп: дуговые ртутные лампы, различные лампы тлеющего разряда, люминесцентные лампы низкого давления, лампы дугового, импульсного и высокочастотного разряда, в том числе и те, в которые добавлены пары металлов или на колбу которых нанесено люминофорное покрытие.

Смешанного излучения

Такие виды ламп освещения одновременно используются тепловое и люминесцентное излучение. Примером могут служить дуги высокой интенсивности.

Светодиодные

К светодиодным источникам света относят все типы ламп и световых приборов с использованием светоизлучающих диодов.

Кроме того, существуют другие признаки по которым производится классификация ламп (по области применения, конструктивно-технологическим признакам и тому подобные).

Основные параметры источников света

Световые, электрические и эксплуатационные свойства электрических источников света характеризуют рядом параметров. Сравнение параметров нескольких источников света, для их использования в той или иной области применения, позволяет остановиться на наиболее подходящем из них. Сопоставляя параметры отдельных экземпляров одного и того же источника света, обращая внимание на место и время изготовления, можно судить о качестве и технологическом уровне их производства.

Перечислим  основные электрические характеристики ламп и в целом всех источников света:

Номинальное напряжение – напряжение, при котором лампа работает в наиболее экономичном режиме и на которое она рассчитывалась для ее нормальной эксплуатации. Для лампы накаливания номинальное напряжение равно напряжению питающей электрической сети. Обозначается такое напряжение Uл.н и измеряется в вольтах. Газоразрядные лампы такого параметра не имеют, так как напряжение разрядного промежутка определяется характеристиками  примененного для ее стабилизации пускорегулирующего аппарата (ПРА).

Номинальная мощность Pл.н – расчетная величина характеризующая мощность потребляемую лампой накаливания при ее включении на номинальное напряжение. Для газоразрядных ламп, в цепь которых включают пускорегулирующие аппараты, номинальная мощность считается основным параметром. Основываясь на ее значении, путем экспериментов, определяются остальные электрические параметры ламп. Нужно учесть, что для определения мощности потребляемой из сети нужно сложить мощности лампы и пускорегулирующего аппарата.

Номинальный ток лампы Iл.н – ток потребляемый лампой при номинальном напряжении и номинальной мощности.

Род тока – переменный или постоянный. Данный параметр нормируется только для газоразрядных ламп. Он влияет на другие параметры (кроме указанных ранее), которые изменяются с изменением рода тока, причем это относится к лампам, работающим только на постоянном или только на переменном токе.

Читайте также  Как вешается вытяжка на кухне?

Основными световыми параметрами источников света являются:

Световой поток, излучаемый лампой. Для измерения светового потока лампы накаливания ее включают на номинальное напряжение. У газоразрядных ламп измерение производят когда она работает на номинальной мощности. Световой поток обозначается буквой Ф (латинская фи). Единицей измерения светового потока является люмен (лм).

Сила света. Для некоторых видов специальных ламп накаливания вместо светового потока используются параметры средняя сферическая сила света или яркость тела накала. Для таких ламп они являются основными светотехническими параметрами. Используемые обозначения для силы света Iv, IvΘ, для яркости – L, их единицы измерения – соответственно кандела (кд) и кандела на квадратный метр (кд/м2).

Световая отдача лампы, это отношение светового потока лампы к ее мощности

ηv = Ф / P .

Единица световой отдачи – единица измерения параметра люмен на ватт (Лм/Вт). С помощью этого параметра можно оценить эффективность применения источников света в осветительных установках. Однако в качестве характеристики облучательных ламп используют другой параметр – величину отдачи потока излучения.

Стабильность светового потока – процентное отношение величины снижения светового потока в конце срока службы лампы к первоначальному световому потоку.

К эксплуатационным параметрам источников света относят параметры, характеризующие эффективность источника в определенных эксплуатационных условиях:

Полный срок службы τполн – продолжительность горения в часах источника света, включенного при номинальных условиях, до полного отказа (перегорание лампы накаливания, отказ в зажигании для большинства газоразрядных ламп).

Полезный срок службы τп – продолжительность горения в часах источника света, включенного при номинальных условиях, до снижения светового потока до уровня, при котором дальнейшая его эксплуатация становится экономически невыгодной.

Средний срок службы τ – основной эксплуатационный параметр лампы. Он представляет собой среднеарифметическое полных сроков службы групп ламп (не менее десяти) при условии, что среднее значение светового потока ламп группы к моменту достижения среднего срока службы осталось в пределах полезного срока службы, то есть при заданной стабильности светового потока.

Это параметр особенно важен для ламп накаливания, так как увеличение их световой отдачи при прочих равных условиях приводит к сокращению срока службы.

Так как экспериментальное определение срока службы приводит к выходу из строя испытуемых ламп, этот параметр определяется на определенном числе ламп с заданной степенью вероятности, рассчитываемой по законам математической статистики.

Динамическая долговечность – параметр, характеризующий срок службы ламп накаливания в условиях вибрации и тряски. Лампы с требуемой динамической долговечностью должны выдерживать определенное число циклов испытаний в установленном диапазоне частот.

Для уточнения работоспособности ламп кроме понятия среднего срока службы используют понятие гарантийного срока службы, определяющего минимальное время горения всех ламп в партии. Этому понятию иногда придают коммерческий смысл, считая гарантийный срок службы временем, в течение которого должна гореть любая лампа.

Сравнительно ограниченная продолжительность горения источников света, особенно ламп накаливания, устанавливает требование к их взаимозаменяемости, что может быть осуществлено только при повторяемости параметров отдельных ламп.

Для обеспечения экономичности осветительной установки важны как начальный световой поток лампы, так и зависимость его спада от времени эксплуатации. С увеличением длительности эксплуатации осветительной установки снижается роль капитальных затрат в стоимости световой энергии.

Отсюда следует, что осветительные установки с малым числом часов горения в год целесообразно выполнять, используя более дешевые лампы накаливания и, наоборот, в промышленных осветительных установках, где продолжительность горения составляет 3000 часов и более, рационально использовать более дорогие, чем лампы накаливания, газоразрядные источники света с высокой световой отдачей.

Стоимость единицы световой энергии определяется также тарифом  на электроэнергию. При низких тарифах оправдано применение в осветительных установках ламп с относительно низкой световой отдачей и повышенным сроком службы.

Источник: https://artillum.ru/lamps/87-vidy-istochnikov-sveta.html

Урок 11: Световые явления. Часть 1

Что называется точечным источником света?

План урока:

Что такое свет? Источники света

Распространение света

Отражение света и его законы

Почему сломался карандаш?

Как проходит свет в разных средах?

Что такое свет? Источники света

Много тысячелетий прошло прежде, чем была выяснена природа этого замечательного явления – свет. Десятки гипотез, предположений, догадок выдвигались учеными. Но вот в конце девятнадцатого века Д. Максвелл и Г. Герц установили, что природа света электромагнитная.

Значение света в жизни человека и в природе громадно. Зарождение и развитие всего живого происходит под влиянием тепла и, конечно, света.

Свет для человека – важнейшее средство познания окружающего мира.

Источник

Основной источник света для всей Земли – это Солнце. Световые потоки устремляются к планетам от Солнца благодаря ядерным реакциям, происходящим на нем.

При изучении тепловых явлений одним из видов теплообмена названо излучением, с помощью которого Земля получает от Солнца тепло. Тепло невидимо. Та часть излучения, которая видима глазом человека, называется видимым излучением.

Именно это излучение рассматривается как световое явление.

Раздел физики, посвященный световым явлениям называют оптикой (греч. «оптикос» — «глаз», «зрительный», «видимый»).

Источник

Не умея объяснить природу света, многие древние ученые придерживались мнения о том, что световые лучи исходят из глаз человека и «ощупывают» все вокруг. Некоторые считали, что есть другое объяснение свету, но не могли его сделать, не зная теории электромагнетизма. Как же далеки были эти люди от современных знаний в оптической области физики.

Сейчас известна природа света, свойства его, строение глаза, создано большое число оптических устройств и простых приборов. Световые явления широко используются в жизни человека.

Создается световое излучение источниками света, которые бывают естественными и искусственными. Сама природа создала естественные источники света. Искусственные источники придумал и изготовил человек.

Естественные (природные) источники света:

  • Солнце и другие звезды;
  • молния;
  • полярные сияния;
  • светящиеся вещества (фосфор, радий, актиний и другие);
  • насекомые (например, светлячки, грибные комары);
  • морские животные (медузы, электрические скаты, угри и другие);
  • старые гниющие пни;
  • светящиеся грибы.

Среди таких источников есть яркие, дающие много света, а есть едва видимые в темноте.

Например, науке известно уже около семидесяти видов светящихся грибов. Из них некоторые можно увидеть ночью на расстоянии десяти метров.

Светящиеся грибы. Источник

Светиться могут подгнившие грузди и старые сыроежки.

Подкрашенный фосфором циферблат часов. Источник

Светящиеся медузы. Источник

Искусственные источники света:

  • всевозможные фонари и лампы;
  • прожекторы и маяки;
  • экраны телевизоров, проекторов;
  • гаджеты;
  • светящиеся рекламы;
  • свечи.

Ночной город. Источник

Не может деятельность человека протекать без освещения. Трудно представить современный город в ночное время без освещенного дома, улицы, квартиры.

Созданные человеком источники света.

Искусственное освещение создано человеком лишь благодаря научному подходу к изучению таких интересных явлений природы – световых.

Распространение света

Чтобы лучше понять, как свет распространяется, введено понятие светового луча. А там, где лучи, там геометрия. Поэтому появился новый подход к световым явлениям, который называется геометрическая оптика.

Для практического изучения света учеными рассматриваются узкие пучки световых лучей. Для их получения используют непрозрачные экраны с отверстиями.

Каковы же главные законы, по которым свет распространяется?

Один из них подтверждается достаточно легко. Человек, который не хочет, чтобы яркий свет бил ему в глаза, приставляет ко лбу ладонь. Он видит окружающие предметы, а свет прямо в глаза ему не попадает.

Источник

Это говорит о том, что свет не может обогнуть ладонь и попасть в глаза наблюдателю. Этот пример показывает, что свет идет по прямой.

Значит, существует закон прямолинейного распространения света. Он звучит так:

Как на рисунке, луч света не пойдет. Он не может огибать препятствия.

Первая научная формулировка этого важного закона была дана в третьем веке до нашей эры Евклидом.

В соответствии с этим законом свет в одной и той же среде не может идти по ломаной траектории и огибать препятствия. Отсюда вытекает понятие тени. Тень сопровождает человека всюду.

На экране тень и полутень. Источник

Если поместить между источником света предмет, например, шар, он перекроет путь световых лучей. За шаром на экране в центре тень более темная, чем по краям. Почему так?

Объяснить это можно, проведя два эксперимента.

Первый. Источник по своим размерам очень мал по сравнению с шаром и расстоянием до экрана. Такой источник света называют точечным. Пусть это будет светящаяся точка А. Та часть прямых лучей, которая упирается на шар не дойдет до экрана, и в соответствующей области его образуется темное пятно – тень. Лучи, идущие выше и ниже шара достигают цели и на экране в этой области светло.

Второй эксперимент. Берется источник света большой или сравнимый с предметом, помещенным между источником и экраном. Такой источник содержит огромное число светящихся точек, испускающих лучи. Из каждой точки, которые находятся между А и В выходит такой же пучок света, как и в первом эксперименте.

Потоки лучей из разных точек источника устремляются к экрану, но доходят до него не все. Мешает шар, дающий для каждого потока свою тень. Все тени пересекаются в центре экрана и образуют общее темное пятно – общую тень. Вокруг нее образуется область размытая, куда от одних точек свет попадает, а от других нет – это полутень.

Природа предоставила человеку яркий пример распространения света, который очень напоминает второй эксперимент. Это солнечные и лунные затмения.

Солнечное затмение. Источник

Они происходят, когда Солнце, Луна и Земля, двигаясь по законам Солнечной системы, выстраиваются в одну линию, как показано на схемах.

Схема солнечного затмения. Источник

Схема лунного затмения. Источник

Затмения для науки представляют большой интерес, особенно солнечные. Они позволяют наблюдать, хоть и кратковременно, состояние солнечной атмосферы, процессы внутри ее и состав.

Отражение света и его законы

Наверное, нет человека, который бы не наблюдал одно из явлений. Снежинки попадают в свет фар автомобиля или солнечные лучи попадают в запыленную комнату, или солнце освещает влажный воздух леса.

Источник

Сами снежинки не являются источниками света, но человек их видит. Но видит только те, которые падают на землю в свете фар. Падающий снег за пределами автомобиля человеческий глаз не фиксирует.

Источник

В пыльной комнате наблюдается плавное движение мелких пылинок в том месте, где через окно проникает солнечный свет. Но ведь это не значит, что пыль в комнате находится только там, где лучи света. Пылинки летают по всей комнате, но не видны глазом.

Источник

В утреннем влажном лесу там, куда прокрадываются яркие лучи, становятся видны мельчайшие капельки воды и лесные пылинки. Они тоже есть по всему лесу, но видны только, где свет.

Эти явления объясняются тем, что человеческий глаз воспринимает свет, идущий от источника или отраженный от освещенного тела.

Если взять в темноте лист бумаги, то сказать, какого цвета этот лист, невозможно. Лист – не источник света и не освещен, поэтому он невидим. Другое дело, если лист попал в руки в светлом помещении. Человек его видит, так как бумага отражает световые лучи, отраженные лучи уже попадают в глаз.

Так снежинки в свете фар, капельки воды и пылинки на свету отражают лучи света, которые и воспринимает человек.

Приведенные примеры показывают, что свет обладает свойством отражения. Как и прямолинейность распространения света, древнегреческим ученым Евклидом был открыт первый закон отражения света. «Световые лучи обратимы» — утверждали древние ученые. Современная трактовка закона следующая:

Для экспериментального подтверждения этого закона используется устройство, называемое оптическим диском.

Оптический диск.

На светлый круг этого прибора нанесена шкала с градусами. Яркая лампочка осветителя находится в светонепроницаемом футляре с очень узким отверстием. В центре диска прикрепляется отражающая поверхность, например, зеркальная пластинка. Осветитель имеет возможность перемещаться вокруг диска.

Из осветителя луч света от лампочки падает на пластинку и отражается от нее. Если переместить осветитель, направление падения луча света изменится. Соответственно изменится и направление отражения света. Но все это происходит в одной плоскости диска, что подтверждает первый закон отражения света.

При сравнении углов, которые образуются световыми лучами в этих опытах, подтверждается второй закон отражения света. Но прежде, чтобы его понять, следует изучить геометрическую схему отражения света.

На схеме представлен геометрический подход к изучению световых явлений. Пучки света заменены геометрическими лучами и добавлены некоторые геометрические элементы, нужные для исследования.

  • α – угол падения;
  • β – угол отражения.
  • прямая MN – плоскость отражения;
  • СО – перпендикуляр к поверхности отражения;
  • АО – падающий луч;
  • ОВ – отраженный луч;

Нужно четко запомнить: углы падения и отражения берутся не к поверхности отражения, а к проведенному в точку падения перпендикуляру.

Читайте также  Что нужно для установки вытяжки на кухне?

Если передвигать осветитель вокруг диска, угол падения будет меняться. Угол отражения тоже изменится и будет таким же, как угол падения. Это свойство отражения является вторым законом отражения света:

Если падающий луч пойдет от точки В по направлению ВО, то он отразится от поверхности MN как раз по линии ОА. Это свойство называют обратимостью световых лучей, о чем говорили еще в древности, но дать научного объяснения не могли.

Почему сломался карандаш?

Наблюдательный рыболов видит, что весла от его лодки при погружении в воду как будто ломаются. Когда весла над поверхностью воды, они снова прямые. Почему? Это объясняют оптические законы.

Взмахнуть рукой в воздухе гораздо легче, чем провести рукой внутри воды. Вот и свет проходит в разных средах (например, в вакууме, стекле, воздухе, алмазе, воде) тоже по-разному. На границе двух различных сред меняется направление хода лучей света.

Углы падения и преломления, которые определяются, как и при отражении, с помощью перпендикуляра к границе раздела, в данном случае не равны. 

Источник

Вот почему карандаш выглядит в стакане сломанным. Здесь не нужно путать световые лучи и сам карандаш. Лучи идут человеку в глаз, как показано на чертеже. То, что карандаш воспринимается глазом в сломанном виде – это оптическая иллюзия, созданная ходом всех лучей, отражающихся от карандаша.

Как проходит свет в разных средах?

Различные среды преломляют лучи по-разному. Так, на границе между воздухом и водой угол преломления примерно 30о, а на границе воздух – алмаз, угол преломления около 21о. Причем, это с одним углом падения в 60о.

Не всегда угол преломления меньше угла падения, как в приведенных примерах. Если вспомнить, что свет – это электромагнитная волна, то значит, он обладает скоростью (300 000 км/с в вакууме). В веществах скорость света другая, всегда меньше.

На своем пути лучи света проходят по различным прозрачным веществам, которые образуют оптическую среду. Если скорость света в одной среде больше, чем в другой, то первая среда называется оптически менее плотной, а вторая – оптически более плотной средой. Например, попадая в воду из воздуха, лучи света переходят из оптически менее плотной среды (воздух) в оптически более плотную (воду).

Преломление лучей на границе раздела связано с оптической плотностью каждой из сред следующим правилом:

Отсюда видно, что угол преломления может быть больше или меньше угла падения. Все объясняется оптическими свойствами среды, куда переходит световой луч.

Источник: https://100urokov.ru/predmety/urok-11-svetovye-yavleniya-chast-1

Источники света: рассказываем о том, какие бывают лампы

Что называется точечным источником света?

Источники света — один из самых массовых товаров. Ежегодно производят и потребляют миллиарды ламп, значительную долю которых пока составляют лампы накаливания и галогенные лампы.

Стремительно растёт потребление современных ламп — компактных люминесцентных и светодиодных. Происходящие изменения в качестве дают надежду на то, что источники света станут важным инструментом дизайнера, архитектора, проектировщика.

Об освещённости и цветовой температуре света

Ряд параметров ламп определяет насколько они применимы в том или ином проекте.

Световой поток определяет количество света, которое дает лампа (измеряется в люменах). Установленная в люстре лампа накаливания мощностью 100 Вт имеет световой поток 1200 лм, 35-ватная «галогенка» — 600 лм, а натриевая лампа мощностью 100 Вт — 10 000 лм.

У разных типов ламп разная световая отдача, определяющая эффективность преобразования электрической энергии в свет и, следовательно, разную экономическую эффективность применения. Световую отдачу лампы измеряют в лм/Вт (светотехники говорят «люменов с ватта», имея в виду, что каждый ватт потребляемой электроэнергии «преобразуется» в некоторое количество люменов светового потока).

Переходя от количества к качеству, рассмотрим цветовую температуру (Тцв, единица измерения — градус Кельвина) и индекс цветопередачи (Ra). При выборе ламп дизайнер обязательно учитывает цветовую температуру для той или иной установки. Комфортная среда сильно зависит от того, какой свет в помещении «тёплый» или «холодный» (чем выше цветовая температура, тем «холоднее» свет).

Цветопередача — важный параметр, о котором часто забывают. Чем более сплошной и равномерный спектр у лампы, тем различимее цвета предметов в её свете. У Солнца сплошной спектр излучения и наилучшая цветопередача, при этом Тцв меняется от 6000К в полдень до 1800К в рассветные и закатные часы. Но далеко не все лампы могут сравниться с Солнцем.

Если у искусственных источников теплового излучения сплошной спектр и нет проблем с цветопередачей, то разрядные лампы, имеющие в своем спектре полосы и линии, сильно искажают цвета предметов.

Индекс цветопередачи тепловых источников равен 100, для разрядных он колеблется от 20 до 98. Правда, индекс цветопередачи не даёт сделать вывод о характере передачи цветов, а иногда способен запутать дизайнера. Так, у люминесцентных ламп и у белых светодиодов хорошая цветопередача (Ra=80), но при этом они неудовлетворительно передают некоторые цвета.

Другой крайний случай, когда индекс цветопередачи более 90 — в этом случае некоторые цвета воспроизводятся неестественно насыщенными.

Лампы выходят из строя. Кроме того, световой поток лампы уменьшается в процессе работы. Срок службы — основной эксплуатационный параметр источников света.

Проектируя осветительную установку нельзя забывать об обслуживании, т. к. частая замена ламп увеличивает стоимость эксплуатации и вносит дискомфорт.

Компактные люминесцентные лампы

Развитие люминесцентных ламп привели к созданию компактных люминесцентных ламп (КЛЛ). Это источник света похожий на миниатюрную люминесцентную, иногда с встроенным электронным пускорегулирующим аппаратом и резьбовым цоколем Е27 (для непосредственной замены ламп накаливания), Е14 и др.

Различие заключается в уменьшенном диаметре трубки и использовании другого типа люминофора. Компактная люминесцентная лампа может с успехом заменить лампы накаливания.

Светодиодные лампы

Светодиоды — полупроводниковые светоизлучающие приборы, называют источниками света будущего. Если говорить о современном состоянии «твердотельной светотехники», можно утверждать, что она вышла из периода младенчества. Достигнутые характеристики светодиодов (световая отдача до 140 лм/Вт, Rа=80–95, срок службы 70 000 часов) уже обеспечили лидерство во многих областях.

Диапазон мощностей светодиодных источников, реализация в лампах разных типов цоколей, управление лампами позволили в короткий срок удовлетворить растущие требования к источникам света. Главными преимуществами светодиодов остаются компактные размеры и управления цветовыми параметрами (цветодинамика).

Источник: https://www.o-svet.ru/blog/lamps/

Источники света — определение, виды и единицы измерения

Что называется точечным источником света?

При разговоре об источнике света, мы подразумеваем любой объект, излучающий электромагнитное излучение в видимой части спектра. Элементарной частицей света является фотон. Именно отсюда и идет двойственная природа света – корпускулярно-волновой дуализм. Фотон может вести себя подобно частице, а может и подобно излучению. Это зависит от конкретных физических условий. Видимый диапазон находится в пределах от 360 нм до 830 нм. Световое излучение возникает из-за различных физических процессов, происходящих в атомах. Если длина волны находится в диапазоне – мы видим свет. От длины волны зависит цвет.

Если атом получает энергию, то он переходит на более высокий энергетический уровень. Это возбужденное состояние. Он неустойчиво. Электроны стремятся вернуться на более низкие энергетические уровни. В результате этого и рождается фотон. А это и есть свет.

Если все атомы испускают фотоны одновременно, то это уже лазерное излучение. Оно когерентно. Луч лазера не обязательно должен быть видимым. Причем оно существует и в природе. В 1981 году лазерное излучение было обнаружено в атмосфере Марса и Венера. Длина волны составила 10 мкм. На такой длине волны работают лазеры с углекислым газом в качестве рабочего тела.

Какие бывают источники света

Все источники света делятся на естественные (природные) и искусственные (созданные руками человека). К природным источникам можно отнести Солнце, светящийся планктон. К искусственным – различные виды ламп, осветительные диоды и т.д.

Основные параметры и единицы измерения источников света

Световое излучение характеризуется многими параметрами:

  • Яркость (L). Измеряется в кд/м2 – кандела на квадратный метр. Это основной фактор светоощущения.
  • Освещенность (E). Измеряется в лк – люкс. 1лк равнозначен потоку излучения в 1 люмен, равномерно распределенному по площади 1м2.
  • Световой поток (Ф). Измеряется в лм – люмен. Характеризует мощность излучения, оценивается по световому ощущению глазом человека. В системе единиц СИ обозначается именно буквой Ф и рассчитывается по формуле:
  • Сила света (I). Измеряется в кд – кандела. Характеризует интенсивность светового потока. Рассчитывается по формуле:

для изотропного источника: 

для не изотропного источника:

  • Световая отдача. Измеряется в лм/Вт – люмен на Ватт. Эта величина может характеризовать экономичность искусственного источника света, грубо говоря, сколько электрической мощности преобразуется в свет.

Для искусственных источников света важна цветопередача. Цвета у предметов будут различаться лучше, если он освещается сплошным равномерным спектром. В идеале чем ближе излучение ламп к солнечному свету, тем она лучше и дороже. При индексе цветопередачи свыше 90 предметы будут казаться необычайно насыщенными.

При малом индексе будет затруднительно определить цвет предмета, однако контуры будут видны. От яркости это практически не зависит.

Виды и классификации источников света

Все искусственные электрические световые излучатели можно разделить по физическим принципам работы:

Тепловые источники света. Это различные классические лампы накаливания. Принцип действия основан на разогреве рабочего тела (обычно – проволочная нить, изготовленная из вольфрама) до температур, при которых появляется и ИК-излучение, и видимый свет. Они обладают достаточно хорошей цветопередачей, но крайне низким КПД. Не более трех процентов.

Энергия расходуется на разогрев и поддержание рабочей температуры вольфрамовой проволоки. Срок службы редко превышает две тысячи часов. На работоспособность внешняя среда не оказывает существенного влияния. Сейчас уже признаны морально устаревшими, но до сих пор производятся. Цена низка. Сюда ж можно отнести и галогеновые лампы, и угольные дуги, и инфракрасные излучатели.

Им не требуется дополнительных устройств для запуска.

Подробнее о лампе накаливания-тут

Люминесцентные. Сюда можно отнести все газоразрядные лампы. Это и лампы с тлеющим разрядом (в результате разряда в парах ртути возникает свечение люминофорного покрытия), ртутные дуговые осветители, лампы с дуговым разрядом (низкого и высокого давления). Этому типу ламп требуется специальная схема для запуска.

Например, у лампы дневного света напряжение горения ниже напряжения зажигания. Т.е. недостаточно просто подать напряжение. Этот тип освещения имеет уже более чем полувековую историю. До сих пор имеется востребованность. Примечательно, что многим осветителям данного типа можно придать практически любую форму колбы. Дизайнерам есть поле для творчества.

Энергопотребление существенно ниже, чем у лам накаливания. Срок службы продолжителен.

Подробнее о люминесцентных лампы вы можете прочесть- тут

Смешанного излучения. В основу положена дуга высокой интенсивности. Это дорогие специализированные излучатели, сочетающие одновременно и тепловой физический принцип, и мощную электрическую дугу. В основном они применяются в прожекторных установках (например, авиационных и корабельных). В производстве весьма сложны. В свободной продаже отсутствуют. Требуется сложная схема на мощных элементах, в ее задачу входит розжиг и поддержание разряда. Среда эксплуатации накладывает свои сложности на инженерные решения. Энергопотребление высокое.

Светодиодные. Сюда можно отнести все источники света, построенные на светодиодах. Принцип действия заключается в появлении светового потока в точке соприкосновения двух разных материалов. Через них пропускается постоянный ток. Причем оба материала – полупроводники. Они пропускают ток в одну сторону. Обратный ток тоже есть, но он ничтожно мал, что им можно пренебречь. Экспериментальным путем были получены материалы, способные испускать фотоны при смене электроном энергетического уровня. Первые светодиоды имели малую яркость и ограниченный набор цветов.

Поэтому использовались только в основном как индикаторы. Сейчас синтезированы материалы, которые позволяют дать большую яркость, охватить почти весь спектр. Но тем не менее в определенных участках спектра может наблюдаться завал, либо преобладание свечения. Современные светодиоды успешно применяются в качестве осветительных приборов, характеризуются наибольшей энергоэффективностью (потребляемая мощность очень низка в сравнении с другими источниками света) и длительным сроком службы. Их относят к холодным источникам света.

В большинстве случаев они все низковольтные, не более 12 В нужно для диода.

В составе ламп всегда находится схема – блок питания (или драйвер). Его задача строго поддерживать параметры питания – напряжение и силу тока. Применительно к автомобилестроению, светодиоды показывают хорошие результаты, но просто менять галогеновую лампу на светодиод не стоит, без драйвера срок службы будет минимален в виду нестабильности питания в бортовой сети автомобиля.

Более подробная информация о led лампах-тут

Лазеры. Оптический квантовый генератор. Лазер расшифровывается light amplification by stimulated emission of radiation. В переводе с английского – усиление света с помощью вынужденного излучения. Смысл процесса состоит в том, что атом рабочего тела в возбужденном состоянии может излучит фотон под действием другого фотона. Поглощения в этом случае не произойдет. При этом фотоны когерентны.

Фотон излученный – это точная копия фотона, который вынудил его появление. Это и есть явление усиления света. Идентичность фотонов обуславливает и монохроматичность излучения. Лазер не используется в качестве осветителя. Он нашел широкое применение – от считывания компакт-диска до лазерной резки металлов. Применяется он и в медицине, в качестве лучевого скальпеля.

А ведь это тоже свет! В качестве рабочего тела может применятся углекислый газ, моно-галогениды, и так далее.

Вполне возможно, что со временем появятся источники света, основанные и на других физических принципах.

Источник: https://vamfaza.ru/istochniki-sveta/