Содержание
- 1 Разрядник- принцип работы, устройство и его виды
- 2 Как работают искровые разрядники?
- 2.1 Защитные устройства с нелинейным сопротивлением (варисторы) часто также относят к разрядникам, хотя принцип их работы другой
- 2.2 Устройство искрового разрядника
- 2.3 Одноразовые и самовосстанавливающиеся разрядники
- 2.4 Проблемы технической реализации
- 2.5 Методы гашения дуги
- 2.6 Трехэлектродный разрядник с термореле производства компании CITEL
- 2.7 В вентильном разряднике для гашения дуги используется нелинейное сопротивление
- 2.8 Специальные типы разрядников
- 2.9 Выводы
- 2.10 Искровые разрядники применяются для уравнивания потенциалов в системах молниезащиты
- 3 Ограничитель импульсных перенапряжений и схема установки разрядника
- 3.1 Классы защиты ограничителей
- 3.2 Обозначение на принципиальных схемах
- 3.3 Установка ограничителя перенапряжений
- 3.4 Основа
- 3.5 Вставка
- 3.6 Как работает защитник от перенапряжений
- 3.7 Схема подключения ограничителя к сети
- 3.8 Трехфазная установка
- 3.9 Безопасность и эффективность ограничителя
- 3.10 Параметры ограничителя перенапряжений
- 3.11 Стоит ли применять ограничитель в сети
- 4 Устройство защиты от импульсных перенапряжений (УЗИП): назначение, принцип работы выбор по классу и установка по схеме
- 4.1 Для чего нужно УЗИП
- 4.2 Строение и принцип работы УЗИП
- 4.3 Виды УЗИП
- 4.4 Искровые промежутки (разрядники)
- 4.5 Варисторные ограничители перенапряжения
- 4.6 Комбинированные устройства
- 4.7 Классы УЗИП
- 4.8 Маркировка защитного устройства
- 4.9 Схемы подключения
- 4.10 Узип с однофазным питанием и системе tn-s
- 4.11 узип с однофазным питанием по системе tn-c
- 4.12 узип с трехфазным питанием и по системе tn-s
- 4.13 узип с трехфазным питанием по системе tn-c
- 4.14 автоматы или предохранители перед узип
- 4.15 Ошибки монтажа УЗИП
- 5 Разрядники: назначение, типы, принцип работы
- 6 Из чего состоит разрядник?
- 7 Разрядники для ограничения перенапряжений
- 7.1 2. Типы разрядников
- 7.2 3. Воздушный разрядник закрытого и открытого типа (трубчатый разрядник)
- 7.3 4. Газовый разрядник
- 7.4 5 Вентильный разрядник
- 7.5 6. Магнитовентильный разрядник (рвмг)
- 7.6 7. Ограничитель перенапряжений нелинейный (ОПН)
- 7.7 8. Выбор разрядников
- 7.8 9. Технические характеристики разрядников
- 7.9 10. Обозначения разрядников
- 7.10 11. Разрядники 6 КВ, 10 КВ, 35кВ, 110 кВ, 220 кВ
Разрядник- принцип работы, устройство и его виды
Сейчас в наше время разрядники распространены повсеместно. Поэтому вопросы о разрядниках стали актуальными. Но на большинстве сайтов информация очень сложная и непонятная. Эта статья очень проста в понимании. Из неё вы узнаете: что такое разрядник, принцип работы, устройство и виды разрядников.
В современной электронике довольно часто возникают сильные всплески напряжения. Перенапряжения могут сильно повлиять на электрические устройства, работающие при нормальных условиях, даже если они кратковременны. Причиной этого может стать плохая коммутация электрических цепей, слабая изоляция, резонансные помехи. Причины бывают, как и внутренние, так и внешние. Атмосферные разряды гроз могут стать внешней причиной перенапряжения.
Для предохранения от перенапряжения раньше применялись только громоотводы. Сейчас с высоким развитием современной электроники стали применяться такие замечательные устройства, как разрядники.
Что такое разрядник?
Разрядник- это устройство, которое защищает современную электронику от высоких скачков напряжения.
С высоким развитием промышленности удалось сделать разрядники экономичными и эффективными для использования в своих целях. Сейчас в наше время использование надежной изоляции весьма дорого и неэффективно, удобнее всего, конечно же, использовать разрядники.
В узком смысле разрядники являются защитными элементами электрических цепей, без которых часто бы портились электрические приборы, изоляция ЛЭП кабелей или проводов.
Устройство разрядника
Разрядник состоит из двух основных частей: электродов и дугогасительного устройства.
Устройство разрядника в зависимости от его вида бывает разным.
Разрядник имеет прочный герметичный корпус, который предохраняет его от внешних механических повреждений. Промежуток между электродами называется искровым промежутком. Один из электродов присоединяется к защищаемому элементу электрической цепи, а другой обязательно заземляется. Без заземления разрядник бесполезен.
Важно то, что дугогасительное устройство несёт большее значение в работе разрядника, в ином случае разрядник не сможет предотвратить от фазного пробоя. Фазный пробой повлечет за собой короткое замыкание (КЗ).
На рисунке 2 показано устройство трубчатого разрядника. Он имеет прочный корпус 1, который способен выдержать большую температуру. Фланец 3, к нему присоединяется защищаемый участок электрической цепи, сам фланец является электродом разрядника. Электрод 2 подключается к заземлению. Он бывает двух видов: с регулировкой и без неё. Первый может менять размер искрового промежутка, тем самым изменяет величину пробивного напряжения.
Пробивное напряжение – это одна из главных характеристик разрядника, которая показывает напряжение, при котором в разряднике, между его электродами возникает искры, то есть разрядник пробивается. Полярность подключение к электродам 2 и 3 не имеет существенной разницы, если это разрядник переменной сети.
Дугогасительное устройство в данном случае представляет из себя корпус, который выделяет газ. Современные методы производства позволяют создавать разрядники различных характеристик.
Принцип работы разрядника
Принцип работы разрядника довольно прост, как и его устройство. При возникновение перенапряжения на электродах разрядника значительно возрастает напряжение. Если это напряжение станет больше напряжение пробоя, которое прописано в характеристике устройства, то возникнет пробой.
Между электродами проскочит искра. При этом снизится напряжение на его электродах, а в искровом промежутке ионизируется воздух. Разрядник станет пробиваться фазным напряжением и возникнет короткое замыкание.
Чтобы этого не произошло, в разряднике присутствует дугогасительное устройство. В зависимости от вида разрядника имеются различные виды дугогасительных устройств. Все разрядники подразделяются на несколько видов.
Ниже представлены основные виды разрядников.
Трубчатый разрядник
Трубчатый разрядник представляет собой трубку из прочного материала. Сам материал – это различные полимеры. Самый распространённый из них – это полихлорвинил. Полихлорвинил способен вынести температуру, пригодную для данного типа разрядников.
В трубку помещены два электрода (рис 1.). Один присоединяется к защищаемому элементу, а другой заземляется. Принцип работы трубчатого разрядника довольно прост.
При напряжении пробоя образуется искра, которая ионизирует воздух. Воздух сильно нагревается, при этом идет массовое выделение газов.
Интенсивная газовая генерация гасит дугу фазного напряжения. Такое дугогасительное устройство называется продольным дутьём. Для выхода газов наружу, в разряднике имеется отверстие.
Газовый разрядник отличается от воздушного только тем, что его корпус наполняют инертным газом (аргоном или неоном). В отличие от воздушного разрядника, в газовом разряднике дугу, образованную фазным напряжением, гасят инертные газы.
В современной электронике трубчатые разрядники распространены повсеместно. Они просты по устройству и надежны. Пробивное напряжение воздушных разрядников невысокое, поэтому такие разрядники не применяются в более высоковольтной аппаратуре.
Более высокое пробивное напряжение у газовых разрядников. Они гораздо эффективнее, так как газы не вступают в реакции, тем самым продлевают жизнь электродам.
Рис 3. Трубчатый разрядник
Вентильные разрядники
Вентильный разрядник состоит из набора многократно повторяющихся искровых промежутков и нелинейных сопротивлений.
Принцип работы вентильного разрядника немного другой, чем у трубчатых разрядников. Во время работы электроды искрового промежутка снимают перенапряжения, а нелинейные сопротивления(резисторы) гасят дугу фазного напряжения.
Резисторы состоят из набора вилитовых дисков. Вилит – это запеченная смесь карбида кальция с жидким стеклом. По сравнению с трубчатыми и газовыми разрядниками, вентильные разрядники имеют более высокое напряжение пробоя.
Рис 4. Вентильный разрядник.
Магнитовентильный разрядник (РВМГ)
В отличие от устройства вентильного разрядника, в устройство магнитовентильного разрядника входит набор кольцевых магнитов.
Принцип работы магнитовентильного разрядника немного другой. При пробое фазным напряжением образуются дуга. Под воздействием магнитного поля магнитов дуга начинает вращаться, тем самым дуга гасится.
Рис 5. Магнитовентильный разрядник (РВМГ).
Ограничители перенапряжения нелинейные (ОПН)
ActionTeaser.ru — тизерная реклама Ограничители перенапряжения нелинейные не имеют электродов. Они состоят из набора нелинейных полупроводниковых сопротивлений – варисторов.
Варистор – это полупроводниковый резистор, который меняет сопротивление в зависимости от приложенного к нему напряжения. При возрастании напряжения, сопротивление варистора падает, поэтому он пропускает через себя электрический ток, тем самым снимая напряжение с защищаемого участка электрической цепи.
Варисторы в процессе работы очень сильно нагреваются, поэтому корпуса нелинейных ограничителей перенапряжения делают теплопроводными. Это позволяет отводить тепло.
Сама конструкция ОПН очень проста, поэтому это упрощает методы производства. Также у ОПН неплохие технические характеристики. Количество варисторов можно варьировать в зависимости от нужного пробивного напряжения нелинейного ограничителя перенапряжения.
Рис 6.Ограничитель перенапряжения нелинейный (ОПН).
В заключение хочу скачать, что помимо высоковольтных разрядников, в современной электронике появились низковольтные разрядники.
Это позволяет радиолюбителем широко использовать такие замечательные устройства.
Источник: https://samosoverhenstvovanie.ru/chto-takoe-razryadnik/
Как работают искровые разрядники?
В линиях электропередачи из-за атмосферных явлений, а также процессов коммутации, нередко возникают импульсные перенапряжения. Импульсные перенапряжения из-за атмосферных явлений могут возникать также в проводных системах связи на медных кабелях, а также антенных сооружений систем радиосвязи. Резкие броски напряжения способны разрушать изоляцию проводов.
Также указанные явления могут приводить к выходу аппаратуры из строя. Для борьбы с перенапряжениями применяются устройства, именуемые разрядниками. Их задача — быстро соединить линию подвергшеюся опасности с заземлением, тем самым «сбросить» разрушительный электрический заряд.
Ни электромеханические системы (реле), ни даже устройства с микропроцессорным управлением не способны заменить простые и дешевые разрядники, отличающиеся от прочих «выключателей» высоким быстродействием.
Защитные устройства с нелинейным сопротивлением (варисторы) часто также относят к разрядникам, хотя принцип их работы другой
Наиболее массовый класс разрядников, исторически появившийся первым — так называемые искровые разрядники. В их основе лежит явление электрического разряда в газе, отсюда и появилось слово «разрядник». Сейчас для защиты изоляции и аппаратуры используют также твердотельные устройства, обладающие нелинейным сопротивлением (варисторы) — при росте напряжения, приложенного к электродам, сопротивление резко падает. Такие устройства также называют разрядниками, хотя никакого разряда в них физически не происходит. Мы расскажем о принципе работы именно искровых разрядников.
Устройство искрового разрядника
Конструкция типичного искрового разрядника содержит в себе следующие основные элементы: герметичную камеру, заполненную газом, электроды, устройство гашения дуги.
Когда напряжение на электродах не выше порогового значения, разрядник находится в состоянии покоя. Внутреннее сопротивление (до 1 ГОм) в этом режиме можно считать бесконечно большим.
При увеличении напряжения выше порогового значения на электродах в газе возникает сначала тлеющий разряд, в результате чего напряжение на выводах падает до 80 В. При этом газ разогревается, растет ток через него, что быстро приводит к возникновению дугового разряда, когда внутри устройства образуется плазменный канал низким сопротивлением. После перехода в данное состояние через разрядник протекает значительный ток (до 150 килоампер), а напряжение на выводах падает до значения около 20 В.
Одноразовые и самовосстанавливающиеся разрядники
Одноразовый искровой разрядник не сможет защитить изоляцию и аппаратуру от повторного действия молнии. После завершения своего действия он представляет собой перемычку с сопротивлением, близким к нулю. В сетях электропитания такая перемычка вызывает срабатывание защиты, отключающей подачу электроэнергии. В телекоммуникационных сетях прерывается связь, что вызывает срабатывание сигнализации. После получения сигнала об обесточивании или прерывании связи на место выезжает специалист, заменяющий одноразовый разрядник.
Простейший вариант реализации одноразового разрядника — электроды внутри камеры, выполненные из металла, который расплавляется под действием высокой температуры. Более сложный вариант — перемычка, закрепленная на стенке камеры каплей легко плавящегося металла. При дуговом разряде эта капля расплавляется и перемычка соединяет электроды. Вероятно, вы уже догадались о том, что одноразовый искровой разрядник не самое лучшее решение для защиты электрических линий и устройств.
Самовосстанавливающийся искровой разрядник способен возвращаться в состояние покоя ограниченное число раз. Иногда такой разрядник используют совместно со счетчиком срабатываний, который позволяет оценить грозовую нагрузку и ожидаемый срок службы устройства.
Проблемы технической реализации
Основной проблемой при построении самовосстанавливающегося искрового разрядника является необходимость гашения дуги. Дело в том, что процесс дугового разряда является самоподдерживающимся. После того, как импульс прошел, плазменный канал продолжает существовать какое-то время, при этом защищаемая линия замкнута на землю.
Если канал не погасить, сработает защита линии от короткого замыкания, что в общем случае нельзя допустить. А, если речь идет о телекоммуникационных применениях, то прерывается связь. В добавок ко всему, от нагрева разрядник просто разрушается.
Для гашения дуги используются разнообразные средства, по конструкции которых и различаются типы искровых разрядников.
Другая проблема — защита симметричной линии, что особенно актуально для использования в телекоммуникационной отрасли. Оба провода защищены путем соединения их разрядниками с «землей». Из-за разницы параметров разрядников может возникнуть ситуация, когда один разрядник сработает, а другой нет, что может только усугубить ущерб от импульсных перенапряжений.
Поэтому для защиты симметричных линий применяются трехэлектродные разрядники (не путать с управляемыми разрядниками, которые также имеют три электрода). Они представляют собой фактически два разрядника в виде одного устройства и с общем выводом «земли», выполненные в едином производственном цикле.
Благодаря этому их технические характеристики полностью идентичны.
Методы гашения дуги
Обеспечение гашение дуги в заданный промежуток времени может быть обеспечено применением специального газа, который подавляет электрическую дугу при силе тока ниже порогового значения. Но на практике такой способ применяется редко, недостатком подобных разрядников является низкая стабильность ресурса использования. То есть, количество возможных срабатываний можно наперед определить только приблизительно.
Трехэлектродный разрядник с термореле производства компании CITEL
Более распространенный способ, когда речь идет о телекоммуникационных применениях — разрядник с термореле. В таких разрядниках используются прочные электроды, способные выдержать многократное срабатывание. Параллельно разряднику включается термореле. При возникновении дугового разряда камера нагревается и термореле срабатывает, шунтируя разрядник. Напряжение на разряднике падает до нулевого значения и дуговой разряд прекращается. После охлаждения термореле его контакты размыкаются и разрядник переходит в состояние покоя. Разрядники с термореле выдерживают до 10 срабатываний.
В вентильном разряднике для гашения дуги используется нелинейное сопротивление
На протяжении многих десятилетий на электрических сетях широко используются вентильные разрядники. Они представляют собой последовательно соединенный газовый разрядник и нелинейное сопротивление. В нашей стране обычно используются сопротивления из вилита — композиционного материала на основе карбида кремния. Сопротивление вилитового резистора тем меньше, чем больше сила тока.
Когда происходит импульсное перенапряжение и срабатывает разрядник, сила тока через резистор резко возрастает и его сопротивление снижается. Но когда импульс прошел и продолжается самоподдерживающийся дуговой разряд, сила тока падает, сопротивление резистора возрастает, что приводит к уменьшению напряжения на контактах разрядника. Таким способом гасится дуговой разряд.
Вентильный разрядник выдерживает до 20 срабатываний.
https://www.youtube.com/watch?v=RSNZemhfXpk
Разновидностью вентильного разрядника является магнитовентильный, где для гашения дуги дополнительно используется магнитное поле.
Несколько выбивается из общего ряда трубчатый разрядник, который также относится к искровым. В нем камера не является герметичной и заполнена твердым веществом — поливинилхлоридом. «Земля» выполнена в виде трубки, другой электрод выполнен в виде стержня, коаксиально расположенного в этой трубе.
При искровом разряде в толще поливинилхлорида вырабатывается газ, стремящийся выйти наружу. Течение газа осуществляет гашение дуги. Трубчатые разрядники выдерживают до 10 срабатываний.
Их основное преимущество — дешевизна, но в остальном их характеристики находятся не на самом высоком уровне, поэтому такие разрядники постепенно заменяют твердотельными.
Специальные типы разрядников
Выпускаются управляемые разрядники, имеющие три электрода. Они используются не для защиты оборудования, а для коммутации больших импульсов энергии. Третий электрод нужен для управления током, текущим между двумя другими электродами.
Для защиты изоляторов ЛЭП применяются длинно искровые разрядники, основанные на принципе скользящего разряда. Этот тип разряда возникает на диэлектрической поверхности и не может переходить в дуговой разряд, что отменяет необходимость в дугогасительных устройствах. В последнее время на смену длинной искровым разрядникам приходят мультикамерные, в которых гашение дуги происходит потоком газа, вырабатываемом при разряде. Как длинно искровые, так и мультикамерные разрядники были изобретены российскими учеными.
Выводы
Искровые разрядники находят свое применение как недорогие надежные устройства, способные выдерживать большие нагрузки. В телекоммуникационных приложениях использование варисторов ограничено из-за высокой емкости. В то же время, целесообразность их использования во многом упирается в экономику. Вентильный разрядник — дорогое устройство, требующее замены через каждые 20 срабатываний. Разница в стоимости между твердотельным и вентильным разрядниками полностью перекрывается более высокими затратами на эксплуатацию, так что твердотельный разрядник предпочтительнее.
Искровые разрядники применяются для уравнивания потенциалов в системах молниезащиты
Применение искровых разрядников в телекоммуникационных и сетях низковольтного электроснабжения необходимо и оправдано. В системах молниезащиты они очень востребованы благодаря надежности и возможности пропускать через себя большие токи. Примером тому могут служить разделительные разрядники Leutron, выдерживающие силу тока до 100 килоампер.
Как вы могли понять из данного материала, принцип действия искровых разрядников не так, прост, как может показаться. Поэтому для их применения в системах молниезащиты желательно обратиться к опытным специалистам из технического центра Zandz.com.
Источник: https://zandz.com/ru/biblioteka/kak-rabotayut-iskrovye-razryadniki/
Ограничитель импульсных перенапряжений и схема установки разрядника
Ограничитель перенапряжений это часто недооцениваемый, но очень важный элемент домашнего электрощитка. Этот элемент рекомендован к установке производителями электрооборудования, в то время как среди самих электриков мнения разделены. Давайте разберёмся с этим делом. Наиболее частые вопросы про ограничитель выглядит следующим образом: Каковы классы разрядников? Из чего он состоит и как работает? Как подключить ограничитель перенапряжений? Действительно ли он защищает электрические устройства?
Классы защиты ограничителей
В области напряжения ниже 1000 В ограничители делятся на 4 класса, обозначенные буквами алфавита: A, B, C и D.
- Ограничитель класса А не используется в бытовых установках, а применяется для защиты линий электропередач.
- Протектор класса B используется для защиты от высоковольтовых скачков напряжения, например, вызванных ударом молнии к линии электропередач.
- Ограничитель класса C предназначен для защиты от перенапряжений со слегка более низкими значениями напряжения в сети. Защитные устройства класса B и C обычно устанавливаются в бытовых распределительных устройствах.
- Протектор класса D используется для прямой защиты выбранных электроустройств, чувствительных к импульсным помехам и всплескам в 220 В сети. Он монтируется в распределительном щите, за розеткой в электрической коробке или непосредственно в защищаемом устройстве.
Каждое устройство защиты ограничивает электрический потенциал только определенным уровнем. Чем ближе оборудование к А классу — тем более высокая мощность. Например:
- Класс A уменьшит уровень напряжения до 6 кВ,
- Класс B уменьшит уровень напряжения до 2,5 кВ,
- Класс C уменьшит уровень напряжения до 1,5 кВ,
- Класс D уменьшит уровень напряжения до 0,8 кВ.
Поэтому ограничители отдельных классов следует применять каскадно, постепенно снижая уровень предельного напряжения. То есть если одно распределительное устройство в доме — используем защитные устройства класса как B, так и C (есть сразу 2 в 1 защитные устройства B + C).
Если здание многоэтажное, в главном распределительном щитке должны использоваться защитные устройства класса B, а ограничители класса C следует использовать в распределительных щитках в отдельных квартирах.
Если подключенное к розетке устройство чувствительно к скачкам напряжения, можем также использовать ограничители класса D. К ограничителям класса А у нас нет доступа, это забота энергетической компании.
Поскольку рассматривать будем домашнюю проводку, статья будет посвящена защитным устройствам класса B и класса C (типа I и II).
Обозначение на принципиальных схемах
Основные символы, используемые при обозначении разрядников перенапряжения, следующие:
- Общее обозначение разрядника
- Разрядник трубчатый
- Разрядник вентильный и магнитовентильный
- ОПН
Установка ограничителя перенапряжений
Стандартный разрядник B или C (возможно, B + C) состоит из двух компонентов:
- Основа ограничителя
- Сменная вставка с защитным элементом
Основа
Основание защитного устройства установлено на DIN-рейке TS35. Оно имеет два хомута. Подключите провод фазы ( L ) или нейтральный ( N ) на котором может появиться слишком большой электрический потенциал. С другой стороны подсоедините защитный провод PE, который подключен к защитной линии распределительного устройства.
Защитный проводник должен иметь минимальное поперечное сечение 4 мм2, но не повредит взять ещё больше. В конце концов есть вероятность, что будет течь очень высокий ток.
Есть 3 контакта под терминалом PE. По стандарту в комплект входит вилка, которая вставлена в нужное место и позволяет соединять провода. Благодаря этим зажимам есть возможность удаленного уведомления в случае повреждения вставки или ее перегорания. Этот сигнал может быть подключен, например, к входу блока управления сигнализацией (смотрите схему). В этом случае панель управления будет проинформирована о повреждении вставки размыканием электрической цепи между красным и зеленым проводами.
Вставка
Вставка содержит все наиболее важные элементы, благодаря которым защитник правильно функционирует:
- Класс B (тип I) — основным элементом является просто искровой промежуток.
- Класс C (тип II) — здесь деталь варистор является основным элементом.
Как работает защитник от перенапряжений
Защитой обеспечиваются устройства, питаемые от шнуров сети 220V, подключенных к разряднику в распределительной коробке. Это касается как фазных, так и нейтральных проводников (в зависимости от выбранного типа защиты).
Общее правило заключается в том, что на одной стороне защитного устройства соединяем фазные проводники и, возможно, нейтральный проводник, а с другой стороны — защитный провод.
Когда напряжение в системе в норме, сопротивление между проводами очень велико, порядка нескольких ГигаОм. Благодаря этому ток не течет через разрядник.
Когда происходит скачок напряжения в сети, ток начинает протекать через ограничитель на землю.
В защитных устройствах класса B основным элементом является искровой промежуток. При нормальной работе сопротивление его очень велико. В случае искрового промежутка это сопротивление является гигантским, поскольку искровой промежуток это фактически разрыв цепи. Когда молния ударяет в элемент электрической установки напрямую, сопротивление искрового промежутка падает почти до нуля благодаря электрической дуге. Из-за появления очень большого электрического потенциала в искровом промежутке между ранее разделенными элементами создается электрическая дуга.
Благодаря этому, например, фазовый провод, в котором имеется большой всплеск напряжения и защитный провод, создают короткое замыкание и большой ток протекает прямо на землю, минуя внутреннюю электрическую установку. После разряда искровой промежуток возвращается в нормальное состояние — то есть разрывает цепь.
Полезное: Схема подключения люстры с 5 лампами и её ремонт
Ограничитель класса C имеет внутри варистор. Варистор представляет собой специфический резистор, который обладает очень высоким сопротивлением при низком электрическом потенциале. Если в системе происходит скачок напряжения из-за разряда, его сопротивление быстро уменьшается вызывая протекание тока на землю и аналогичную ситуацию, как в случае искрового промежутка.
Разница между классом B и классом C заключается в том, что последний способен ограничивать всплески напряжения с меньшим потенциалом, чем прямой удар молнии. Недостатком этого решения является довольно быстрый износ варисторов.
Главным в ограничителях перенапряжений, независимо от используемого класса, является установка заземления с очень хорошими параметрами, то есть с очень низким электрическим сопротивлением. Если это сопротивление слишком велико — ток перенапряжения (вызванный ударом молнии) вместо протектора может протекать через электрическую систему и оставить на пути сгоревшее оборудование, включенное в данный момент к розеткам 220 вольт.
Схема подключения ограничителя к сети
Как подключить ограничитель к домашнему щитку? Начнем с основ. У нас есть однофазная сеть и одномодульный разрядник. Мы хотим защитить им фазовый провод. Тип сети — TN-S.
Подключаем фазный проводник питания непосредственно к разряднику и подключаем разрядник с другой стороны к клеммной колодке PE.
Но в этом домашнем коммутаторе больше ничего, кроме импульсного ограничителя. Добавим недостающие элементы.
Как видите, установка ограничителя перенапряжений не влияет на дальнейшую организацию компонентов в домашнем коммутационном щитке. Соединение устройства остаточного тока и автоматических выключателей осуществляется так же.
Вообще в распределительных устройствах разрядники перенапряжения класса B, C или B + C устанавливаются перед автоматическим выключателем (или автоматическими выключателями) и предохранителями токовой защиты. Но ограничитель является первым элементом, лежащим в основе защиты дома или квартиры.
Трехфазная установка
В трехфазной схеме увеличивается ширина ограничителя и количество защищаемых соединений. Однако принцип функционирования ограничителя остается неизменным. Наиболее часто используемые трехслойные системные защитные устройства, работающие в системе 4 + 0, что означает присоединение к разряднику следующих линий:
- 3-фазные провода
- 1 нейтральный провод
Каждый из проводов подлежащих защите имеет равные права, то есть возможные перенапряжения устраняются путем подачи тока на защитную установку и, как результат, на землю.
Конечно для установок TN-C (установка без отдельного защитного провода) можно приобрести защитные устройства только с 3 защищаемыми разъемами. Затем с нижней стороны подключите ограничитель к полосе PEN (нейтральная защита).
Безопасность и эффективность ограничителя
Каждый производитель рекомендует использовать дополнительный предохранитель защищающий сеть, в случае повреждения разрядника и короткого замыкания в фазовом проводе с защитным проводником.
В бытовых установках это не часто практикуется, потому что защита от короткого замыкания существует в виде прерывателя или предохранителя, а его малый номинальный ток безопасно защищает сеть от сбоев.
Параметры ограничителя перенапряжений
Перед тем как пойти в магазин и купить это устройство, нужно знать следующее:
- Количество модулей (терминалов) — зависит от типа вашей сети. 1 модуль можно купить когда есть однофазная система TN-C. 3 модуля, когда установка находится в сети TN-C трехфазной и 4 модуля когда сеть является трехфазной в TN-S или TT.
- Класс (тип) — можно выбирать между классами B, C или B + C. Если не уверены что перед вашей квартирой используется ограничитель типа B, стоит выбрать решение B + C. В противном случае ограничителя типа C будет достаточно.
- Номинальное напряжение, в котором работает ограничитель.
- Uc — рабочее напряжение протектора, то есть максимальный уровень напряжения который приведет к срабатыванию.
- In — номинальный ток ограничителя, то есть какой ток в случае короткого замыкания может протекать через разрядник.
- Imax — ток, который разрядник способен принимать во время атмосферного разряда. Обратите внимание, что оба значения (In = 30 000A и Imax = 60 000A) будут относительно большими по отношению к току при нормальной работе приборов в доме.
- Up — напряжение до которого уменьшается в случае разрыва. Например если потенциал достигает напряжения 10 000 В в случае всплеска — итоговое значение снижается до 150.
Стоит ли применять ограничитель в сети
Каждый электрик размышляет стоит ли вообще покупать разрядник. Ведь это не самый дешевый элемент электромонтажа. Теоретически, во время ремонта или строительства проводки с нуля в квартире или доме расходы 3000 рублей (в случае 4-модульного протектора) — капля в океане расходов. На практике у защитного блока не всегда будет возможность доказать, что он нужен. Даже если он сработает, снижение напряжения может не всегда защитить чувствительные электронные устройства (лучше обстоит дело с защитой класса D).
Тем не менее редакция 2Схемы.ру настоятельно рекомендует оснастить сеть этим оборудованием. Если он защитит даже одно ценное устройство, расходы сразу окупятся и даже с избытком!
Источник: https://2shemi.ru/ogranichitel-impulsnyh-perenapryazhenij-i-shema-ustanovki-razryadnika/
Устройство защиты от импульсных перенапряжений (УЗИП): назначение, принцип работы выбор по классу и установка по схеме
С началом грозы принято отключать дорогостоящие бытовые приборы из розетки, а ethernet кабели от компьютеров. Это нужно, чтобы защитить их от неожиданного удара молнии в ЛЭП и выхода из строя из-за перенапряжения. Но есть способ гораздо удобнее — установить на ввод в квартиру устройство защиты от импульсных перенапряжений.
Импульсные перенапряжения представляют угрозу для бытовых электроприборов. Причины данного явления делятся на 2 категории:
- Атмосферные перенапряжения (молнии). Разряд попадает в линию электропередач. Затем высокий потенциал следует до розеток потребителей и выводит домашнюю электронику из строя.
- Техногенные перенапряжения. Неисправность контура молниезащиты. Пробой изоляции между сетями высокого и низкого напряжения.
Независимо от причины, в квартирных розетках формируется разность потенциалов в несколько тысяч вольт. Импульс длится доли секунды. Но этого достаточно чтобы повредить чувствительные электронные платы, микросхемы и процессоры.
Для чего нужно УЗИП
Задача УЗИП состоит в защите электроприборов от перенапряжения. Устройство оберегает бытовую сеть от скачков тока в следующих случаях:
- неполадки на трансформаторной подстанции и замыкания ВВ проводов на НВ линию;
- прямое попадание грозового разряда в ЛЭП;
- разряд молнии вблизи воздушных линий электроснабжения или жилых зданий.
УЗИП для частного дома
Строение и принцип работы УЗИП
Принцип работы УЗИП основан на зависимости его сопротивления от приложенного к контактам напряжения. Например, если вольтаж в сети равен типичным 220 В, то сопротивление устройства составляет порядка 1-100 Мом. Если напряжение возрастает до критического уровня, то УЗИП резко снижает сопротивление до единиц ом и шунтирует квартиру от чрезмерно высоких токов.
Внутри устройства имеется полупроводниковый элемент — варистор. Именно он за несколько микросекунд сбрасывает сопротивление до минимальных значений.
Дополнительная информация. Варистор — это круглая, светло-синяя или черная радиодеталь с двумя ножками. Ее диаметр составляет от 7 до 30 мм. Варистор часто встречается в бытовой технике. Он включается между фазным и нулевым проводами электроприбора или впаивается в его плату. В случае с домашней техникой варистор также служит для защиты от перенапряжения, только не всей квартиры, а конкретного бытового прибора, в котором он установлен.
Виды УЗИП
Существующие УЗИП отличаются по быстроте срабатывания. Различия объясняются неодинаковыми конструкциями и принципами работы приборов. Поэтому принято выделять 3 вида устройств молниезащиты:
- Искровые промежутки (разрядники). Представляют собой воздушный зазор между электродами.
- Варисторные ограничители перенапряжения (ОПН). Полупроводниковые устройства. Резко снижают сопротивления при возрастании напряжения. Встречаются в УЗИП, устанавливаемых в квартирные щитки, на платах бытовой техники и на опорах ЛЭП.
- Комбинированные устройства. Сочетают в себе оба из перечисленных типов устройств.
Искровые промежутки (разрядники)
Наиболее старый и простой тип защиты от перенапряжения. Как правило, разрядники используются в трансформаторных подстанциях и распределительных устройствах. На таких объектах возможны резкие скачки напряжения при коммутационных процессах.
Имеется 2 электрода. Один подключается к заземлению. Второй к защищаемой линии. Пока разность потенциалов между электродами находится в пределах нормы, разрядник обладает большим сопротивлением воздуха. Как только напряжение между электродами превышает заданный уровень, происходит пробой воздушного промежутка (пролетает искра). Разрядник на доли секунды сбрасывает сопротивление.
УЗИП на основе искровых разрядников
Напряжение срабатывания разрядника регулируется расстоянием между электродами. Чем оно больше, тем выше вольтаж, при котором произойдет пробой воздушного промежутка.
Важно! Если долго проходить в помещении в синтетической куртке, а потом прикоснуться к чему-то металлическому, то между пальцем и железным предметом пролетит искра. Произойдет пробой воздушного промежутка между заряженной от трения курткой и железным предметом. Разрядники работают по аналогичному принципу.
Варисторные ограничители перенапряжения
Низковольтный вариант данного устройства применяется в квартирных электрощитах. Для этого на корпусе предусмотрено стандартное крепление под DIN-рейку. Прибор работает с напряжениями 220/380 В и предохраняет от перенапряжения отдельную квартиру или трехфазного потребителя.
Высоковольтный вариант устанавливается на линии 10 кВ и выше. Обладает сравнительно большими размерами и мощным керамическим корпусом белого или коричневого цвета. Данный ограничитель импульсных перенапряжений еще называют вентильным разрядником (не путать с искровым промежутком).
Ограничитель импульсных напряжений на варисторах
Комбинированные устройства
Комбинированные УЗИП сочетают достоинства от вышеперечисленных защитных устройств. Основные из них таковы:
- Низкое напряжение срабатывания варисторных ОПН. Как следствие, высокая чувствительность к самым незначительным превышениям напряжения.
- Большая рассеиваемая мощность искровых разрядников. Некоторые модели способны пропускать токи в десятки килоампер.
Классы УЗИП
Различные модели УЗИП отличаются по типу защищаемого потребителя, месту установки и техническим требованиям. Поэтому их принято разделять на 3 класса.
1-й (B) | Защита от прямых ударов молнии, бросков напряжения при КЗ. | Необходима защита от прямого прикосновения человека к частям устройства. Отсутствиериска возгорания УЗИП при его неисправности или КЗ в системе электроснабжения. | От 0,5 до 50 кА при импульсном токе в течение 350 мкС. |
2-й (C) | Для защиты ЛЭП и подстанций от перенапряжений при переключениях. Как дополнительные мерызащиты при ударе молнии. | Аналогичные1 классу. Защита от прямого прикосновения. Отсутствие риска возгорания при КЗв сети или неисправности защитного устройства. | 5 кА при импульсе в 20 мкС. |
3-й (D) | Для гашения остаточных сетевых помех и скачков напряжения. | Защита от низковольтного перенапряжения между фазой и нулем. От прямого прикосновения ивозгорания. | До 1,5 кА при 20 мкС |
Маркировка защитного устройства
Для правильного выбора и установки устройства необходимо ознакомиться с его маркировкой. Она представлена в буквенно-цифровом виде и находится на корпусе УЗИП. Расшифровка обозначений приведена ниже.
- L/N — винтовые клеммы для подключения кабелей защищаемой сети;
- символ «земля» — клемма для подключения нулевого защитного проводника;
- зеленый флажок на корпусе — указывает на исправность прибора;
- Un — номинальное рабочее напряжение защищаемой сети;
- Umax — предельное допустимое напряжение;
- 50 Гц — частота тока;
- In — номинал разрядного тока;
- Imax — предельный разрядный ток, который способны выдержать устройство;
- Uр — напряжение срабатывания УЗИП.
Схемы подключения
Для подключения защитного устройства недостаточно ознакомления с его характеристиками. Дополнительно следует учесть и параметры питающей сети. В странах СНГ наиболее распространены такие ее виды:
- однофазная, TN-S;
- однофазная, TN-C;
- трехфазная, TN-S;
- трехфазная, TN-C;
Узип с однофазным питанием и системе tn-s
на картинке ниже представлена схема подключения. узип включается после вводного автоматического выключателя. как фазный, так и нулевой провод, на защитное устройство поступает с автомата. заземляющий же проводник идет с pe клеммника.
узип с однофазным питанием по системе tn-c
применяется однополюсной прибор. заземляющий проводник отсутствует. поэтому устройство защиты от перенапряжений подключается между фазным и нулевым. при критическом скачке напряжения в l проводе лишний ток, минуя квартиру, потечет в n провод.
узип с трехфазным питанием и по системе tn-s
устройство защиты устанавливается после вводного автомата. если поставить его после счетчика, то в случае удара молнии дорогой прибор учета выйдет из строя. все 3 фазы поступают на узип в соответствии с маркировкой его клемм. при таком подключении стабильность напряжения контролируется не только между фазой и землей, но и между отдельными фазами.
узип с трехфазным питанием по системе tn-c
в трехфазной сети желательно использовать модульное устройство защиты на 3 полюса. но при необходимости допустимо воспользоваться и 3 однофазными узип. независимо от комплектации уровень напряжения будет контролироваться между всеми фазными проводниками и нулем.
автоматы или предохранители перед узип
На вводе в любую квартиру в обязательном порядке монтируется устройство защиты от КЗ или перегрузки по току. Раньше применялись пробки (плавкие вставки). Сейчас в ходу автоматические выключатели.
УЗИП монтируется после этих устройств. При превышении напряжения оно замыкает свои контакты. Далее возникает огромный ток короткого замыкания. Если перед УЗИП стоит плавкая вставка, то она перегорит. Ее необходимо будет заменить новой. Если автоматический выключатель, то он сработает, и его достаточно будет просто включить.
В контексте ОИН специалисты рекомендуют именно плавки вставки. Объясняется это простотой их устройства и меньшими рисками перекрытия высоким напряжениям. То есть если под превышенным потенциалом окажется автомат, то есть риск, что внутри него образуется дуга, и он не выполнит защитную функцию. С плавким предохранителем такая опасность минимальна. Однако они обладают меньшей быстротой действия чем автоматы.
Важно! Не следует ремонтировать пробки и изготавливать так называемые «жучки». Это быстро, дешево и просто, но периодически приводит к серьезным последствиям. В идеале лучше иметь пробки на запас или установить автоматические выключатели.
Ошибки монтажа УЗИП
При правильной установке защитное устройство гарантирует безопасность бытовых электроприборов. Распространенные примеры ошибок при монтаже УЗИП следующие:
- Монтаж УЗИП в щиток с неисправным заземлением. Для работы устройство требует надежной земли. Поэтому перед установкой необходимо убедиться в исправности заземления.
- Неправильное подключение с нарушением схемы. Корректно подключить УЗИП может только человек, разбирающийся в электрике. В случае затруднений следует обратиться к типовым схемам в технической документации на устройство.
- Применение защитного аппарата, не подходящего по классу. При ударе молнии такое устройство в лучшем случае выйдет из строя. В худшем оно пропустит высокое напряжение в квартирную электрическую сеть.
В подавляющем большинстве случаев УЗИП защитит ваш дом от импульсных перенапряжений. Они возникают в результате ударов молнии вблизи ЛЭП или аварий на трансформаторных подстанциях. Подобные вещи невозможно предсказать заранее, поэтому защита от перенапряжений пойдет на пользу любому электрощиту.
Независимо от того, приобретается УЗИП для частного дома или квартиры, следует обратить внимание на его класс. Другие важные параметры — это минимальное напряжение срабатывания, предельный импульсный ток КЗ и количество защищаемых фаз. Не менее значимо правильно выбрать схему подключения прибора к сети.
Устройство защиты от импульсных перенапряжений (УЗИП): назначение, принцип работы выбор по классу и установка по схеме
Источник: https://220.guru/elektrooborudovanie/avtomaty-uzo/ustrojstvo-zashhity-ot-impulsnyx-perenapryazhenij.html
Разрядники: назначение, типы, принцип работы
В электрических сетях довольно часто наблюдается появление импульсных всплесков напряжения, вызванных различными причинами. Несмотря на то, что такие перенапряжения носят кратковременный характер, они способны вызвать пробой изоляции с последующим коротким замыканием. Одним из вариантов предотвращения негативных последствий могло бы стать использование более надежной изоляции, однако этот способ значительно увеличивает стоимость всего оборудования. Поэтому наиболее оптимальным вариантом стали разрядники. Основной функцией этих устройств является ограничение перенапряжений в электрических сетях и установках.
Общее устройство и принцип работы
Высокочастотное оборудование защищается не только молниеотводами, но и с помощью высоковольтных разрядников. Каждый из них состоит из двух основных частей – электродов и устройства для гашения дуги.
Один из электродов устанавливается на защищаемую цепь, а к другому подводится заземление. Между ними образуется пространство, известное как искровой промежуток. Когда напряжение достигает определенного значения, наступает пробой искрового промежутка между двумя электродами. За счет этого с защищаемого участка цепи снимается перенапряжение. Основным техническим требованием, предъявляемым к разряднику, является определенный уровень гарантированной электрической прочности в условиях промышленной частоты.
То есть, при нормальном режиме работы сети разрядник не должен пробиваться.
После пробоя в действие вступает дугогасительное устройство. Под действием импульса повышается ионизация искрового промежутка, в результате чего пробивается фазное напряжение, действующее в нормальном режиме. Оно приводит к короткому замыканию и срабатыванию защитных устройств на этом участке. Основной задачей дугогасительного устройства как раз и является скорейшее устранение замыкания, до срабатывания средств защиты.
Широкое распространение получили конструкции газовых разрядников. В их состав входит коаксиальный элемент с незначительным разрядным промежутком, и патрон с выводом на землю. В промежутке между ними выполняется установка газоразрядного элемента в форме таблетки, заключенного в стеклянную или керамическую оболочку и оборудованного электродами с каждой стороны. Внутреннее пространство оболочки заполнено газом – аргоном или неоном.
В случае перенапряжения происходит срабатывание защиты: под действием высокой температуры в разряднике наступает резкое падение сопротивления. После этого образуется дуговой разряд с напряжением около 10 вольт. Каждый такой разрядник оборудуется собственным заземлением, в противном случае он будет бесполезен.
Во всех газовых разрядниках центральная жила коаксиального кабеля и первый электрод соединяются между собой. Второй электрод соединяется с заземленным корпусом разрядника. Когда через устройство проходит высокий импульс с большим напряжением, происходит пробой разрядника и центральная жила кабеля в течение короткого времени шунтируется на землю. Наблюдается существенное падение значения тока, до состояния гашения дуги, после чего наступает размыкание, то есть прибор находится в непроводящем режиме.
Газоразрядная трубка считается одноразовой деталью разрядника, требующая замены после каждого срабатывания.
Технические характеристики газовых разрядников
Каждый газовый разрядник обладает специфическими электрическими свойствами и техническими характеристиками.
- Номинальный импульсный ток разряда. Технические требования, предъявляемые к разряднику, определяют его способность выдерживать определенное значение импульсного тока. Отклонение от нормы имеет допустимые пределы, определяемые требованиями. Номинальное значение тока всегда указано в технической спецификации конкретного устройства.
- Емкость и сопротивление изоляции. Данные параметры достигают, соответственно, свыше 10 гОм и менее 1 пФ, что делает такие устройства буквально незаменимыми при использовании в той или иной сети.
- Статическое напряжение срабатывания. Данным параметром определяется тип разрядника, установленного в защитном устройстве. Его значение равно напряжению, достаточному для зажигания разрядника, при условии медленного возрастания величины напряжения.
- Динамическое напряжение срабатывания. Эта величина является своеобразным пределом, когда наступает быстрый рост напряжения, при котором происходит срабатывание газового разрядника.
Работа реле времени с задержкой включения
Вентильный разрядник
Конструкция включает две основные части: многократный искровой промежуток, состоящий из нескольких однократных элементов и рабочий резистор, представляющий собой последовательно набранные вилитовые диски. Оба основных элемента последовательно соединены между собой. Рабочий резистор обеспечивается герметичной защитой от внешней среды, в связи со свойствами вилита изменять свои характеристики при повышенной влажности. При появлении перенапряжения возникает пробой многократного искрового промежутка.
Рабочий резистор выполняет задачу снижения тока до такой величины, чтобы ее могли свободно погасить искровые промежутки. Сопротивление вилита является нелинейным, оно снижается по мере увеличения силы тока. Данное свойство дает возможность пропускать больше тока при уменьшении падения напряжения. Основным достоинством разрядников этого типа считается бесшумное срабатывание при отсутствии выбросов газа или пламени.
Магнитовентильный разрядник
В его состав входят несколько блоков, соединенных последовательно, с магнитными искровыми промежутками и вилитовыми дисками. В каждом блоке имеются единичные искровые промежутки, соединенные последовательно, и постоянные магниты. Все элементы блока размещаются в фарфоровом цилиндре. Во время пробоя в единичных промежутках возникает дуга. На нее воздействует поле, создаваемое кольцевыми магнитами, заставляя вращаться с высокой скоростью. В результате, гашение дуги происходит гораздо быстрее, чем в других типах вентильных разрядников.
Ограничитель перенапряжения нелинейный
В этом разряднике отсутствуют искровые промежутки. Конструкция активной части ограничителя включает в себя последовательный набор варисторов. Именно на их свойствах основан принцип работы всего устройства, поскольку проводимость варисторов находится в зависимости от прилагаемого напряжения.
Источник: https://electric-220.ru/news/vysokovoltnye_razrjadniki_vidy_i_naznachenie/2016-12-22-1145
Из чего состоит разрядник?
Сейчас в наше время разрядники распространены повсеместно. Поэтому вопросы о разрядниках стали актуальными. Но на большинстве сайтов информация очень сложная и непонятная. Эта статья очень проста в понимании. Из неё вы узнаете: что такое разрядник, принцип работы, устройство и виды разрядников.
В современной электронике довольно часто возникают сильные всплески напряжения. Перенапряжения могут сильно повлиять на электрические устройства, работающие при нормальных условиях, даже если они кратковременны. Причиной этого может стать плохая коммутация электрических цепей, слабая изоляция, резонансные помехи. Причины бывают, как и внутренние, так и внешние. Атмосферные разряды гроз могут стать внешней причиной перенапряжения.
Для предохранения от перенапряжения раньше применялись только громоотводы. Сейчас с высоким развитием современной электроники стали применяться такие замечательные устройства, как разрядники.
Разрядники для ограничения перенапряжений
Разрядник — это пассивное электрическое устройство, у которого при определенном значении приложенного напряжения пробивается искровой промежуток и ограничивает перенапряжения в установке.
Разрядники представляют собой защитные аппараты. Они предназначены для защиты изоляции электрооборудования от перенапряжений.
Разрядник состоит из двух электродов и дугогасительного устройства.
Один из электродов закрепляют на защищаемой цепи, второй электрод заземляют. Пространство между этими двумя электродами называется искровым промежутком. При определенном значении напряжения между электродами искровой промежуток пробивается и снимает перенапряжение с защищаемого участка цепи.
После пробоя импульсом искровой промежуток становится достаточно ионизированным, чтобы фазные напряжения нормального режима могли пробиться, в связи с этим возникает короткое замыкание. Задача дугогасительного устройства — в наиболее короткие сроки устранить это до того, как сработают устройства защиты.
Принцип действия разрядников. В конструкции разрядников предусмотрен воздушный зазор в перемычке, который соединяет фазы линии электропередач и заземляющий контур. При номинальной величине напряжения цепь в перемычке разорвана. В случае грозового разряда в результате перенапряжения в ЛЭП происходит пробой воздушного зазора, происходит замыкание цепи между фазой и землей и импульс высокого напряжения напрямую уходит в землю.
2. Типы разрядников
Различают такие типы разрядников:
- Воздушный
- Газовый
- Вентильный
- Магнитовентильный
3. Воздушный разрядник закрытого и открытого типа (трубчатый разрядник)
Имеет вид полихлорвиниловой трубки, которая предназначена для гашения дуги. На каждом конце разрядника имеется по одному электроду (рис.1). К одному электроду подведено заземление, а другой установлен на незначительном расстоянии от защищаемого участка.
Рисунок 1 – Структурная схема воздушного разрядника
4. Газовый разрядник
Газовые разрядники представляют собой компоненты, заполненные инертным газом (рис.2). Корпус разрядника изготовлен в виде керамической трубки, концы которой закрыты металлическими пластинами и выступают в роли электродов.
Рисунок 2 – Структурная схема газового разрядника
5 Вентильный разрядник
Состоит из двух основных частей: многократный искровой промежуток и рабочий резистор, состоящий из последовательно набранных вилитовых дисков (рис.3). Оба этих основных элемента соединены между собой последовательно.
Рисунок 3 – Структурная схема вентильного разрядника
6. Магнитовентильный разрядник (рвмг)
В состав магнитовентильного разрядника входят несколько блоков, соединенных последовательно (рис.4). В каждом блоке имеются единичные искровые промежутки, которые последовательно соединены, а также постоянные магниты. Все элементы блока размещаются в цилиндре из фарфора.
Рисунок 4 – Структурная схема магнитовентильного разрядника
7. Ограничитель перенапряжений нелинейный (ОПН)
В этом разряднике отсутствуют искровые промежутки(рис.5). Конструкция активной части ограничителя включает в себя последовательный набор варисторов.
Рисунок 5 – Структурная схема ограничителя перенапряжений
8. Выбор разрядников
Основные параметры разрядников: класс пропускной способности, наиболее длительное допустимое рабочее напряжение, уровни остающихся напряжений при коммутационных и грозовых импульсах, номинальное напряжение, величина тока срабатывания противовзрывного устройства, номинальный разрядный ток, длина пути утечки внешней изоляции.
Выбор разрядников производится исходя из назначения, конструктивного исполнения, требуемого уровня ограничения перенапряжений, схемы сети и ее параметров.
9. Технические характеристики разрядников
Выделяют такие основные технические характеристики разрядников:
- Класс напряжения цепи;
- Наибольшее допустимое напряжение;
- Пробивное напряжение при частоте 50 Гц в сухом состоянии и под дождем;
- Импульсное пробивное напряжение при предразрядном времени от 2 до 20 мкс;
- Остающееся напряжение при волне 8 мкс;
- Ток утечки;
- Токовая пропускная способность;
- Длина пути утечки внешней изоляции;
- Допустимое натяжение проводов;
- Высота;
- Масса ограничителя.
10. Обозначения разрядников
Таблица 1 – Обозначения разрядников на схемах
Наименование | Обозначение |
Разрядник. Общее обозначение. | |
Разрядник трубчатый | |
Разрядники вентильный и магнитовентильный | |
Разрядник шаровой | |
Разрядник роговой | |
Разрядник угольный | |
Разрядник электрохимический |
11. Разрядники 6 КВ, 10 КВ, 35кВ, 110 кВ, 220 кВ
Основные характеристики разрядников 6-220 кВ приведены в таблицах 2 и 3.
Таблица 2 – Технические характеристики разрядников 6 кВ, 10 кВ
Параметр | Единица измерения | РВО-6 Н | РВО-10 Н |
Класс напряжения сети | кВ | 6 | 10 |
Наибольшее допустимое напряжение | кВ | 7,5 | 12,7 |
Пробивное напряжение при частоте 50 Гц в сухом состоянии и под дождём: |
|||
не менее | кВ | 16 | 26 |
не более | кВ | 19 | 30,5 |
Импульсное пробивное напряжение при предразрядном времени от 2 до 20 мкс, не более |
кВ | 32 | 48 |
Остающееся напряжение при волне 8 мкс, не более: | |||
с амплитудой тока 3000А | кВ | 25 | 43 |
с амплитудой тока 5000А | кВ | 27 | 45 |
Ток утечки, не более | мкА | 6 | 6 |
Токовая пропускная способность: | |||
20 импульсов тока волной 16/40 мкс | кА | 5,0 | 5,0 |
20 импульсов тока прямоугольной волной длительностью 2000 мкс | А | 75 | 75 |
Длина пути утечки внешней изоляции, не менее | см | 18 | 26 |
Допустимое натяжение проводов, не менее | Н | 300 | 300 |
Высота, не более | мм | 294 | 411 |
Масса, не более | кг | 3,1 | 4,2 |
Таблица 3 – Технические характеристики разрядников 35кВ, 110 кВ, 220 кВ
Параметр | Единица измерения | РВС-35 РВС-35 Т1 |
РВС-110М РВС-110М Т1 |
РВС-220М РВС-220М Т1 |
Класс напряжения сети | кВ | 35 | 110 | 220 |
Наибольшее допустимое напряжение | кВ | 40,5 | ||
Пробивное напряжение при частоте 50 Гц в сухом состоянии и под дождём: |
||||
не менее | кВ | 78 | 200 | 400 |
не более | кВ | 98 | 250 | 500 |
Импульсное пробивное напряжение при предразрядном времени от 2 до 20 мкс, не более |
кВ | 125 | 285 | 530 |
Остающееся напряжение при волне 8 мкс, не более: | ||||
с амплитудой тока 3000А | кВ | 125 | 315 | 630 |
с амплитудой тока 5000А | кВ | 130 | 335 | 670 |
Ток утечки, не более | мкА | 143 | 367 | 734 |
Токовая пропускная способность: | ||||
20 импульсов тока волной 16/40 мкс | кА | 10,0 | 10,0 | 10,0 |
20 импульсов тока прямоугольной волной длительностью 2000 мкс | А | 150 | 150 | 150 |
Длина пути утечки внешней изоляции, не менее | см | 115 | 345 | 690 |
Допустимое натяжение проводов, не менее | Н | 300 | 500 | 500 |
Высота, не более | мм | 1280 | 3100 | 4620 |
Масса, не более | кг | 73 | 175 | 497 |
Источник: https://ElectricPS.ru/razriad