Что такое резонанс в электрической цепи?

Содержание

Резонанс в электрической цепи: при каком условии возникает резонанс в цепи переменного тока

Что такое резонанс в электрической цепи?

При расчете сложных электрических схем необходимо учитывать все нюансы. Даже незначительное отклонение в силе тока, напряжении или частоте, может привести к существенным перебоям в работе прибора. Некоторые процессы могут оказывать существенное влияние на электрические компоненты, но измерить их с помощью мультиметра или иных приспособлений не представляется возможным. Одной из таких «невидимок» является резонанс в электрической цепи.

Что такое резонанс в электрической цепи

В повседневной жизни слово «Резонанс» ассоциируется, прежде всего, с реакцией общественности на какое-либо значимое событие. В действительности, это явление окружает людей повсюду.

Резонанс в электрической цепи.

Например, работа акустических систем домашнего кинотеатра не производила бы такого эффекта, в том числе по громкости, если бы в корпусах колонок не использовался бы эффект акустического резонанса. Корпуса практически всех музыкальных инструментов изготавливаются таким образом, чтобы максимально увеличить громкость звучания колеблющегося тела. Человеческий ой аппарат, также представляет собой резонаторную систему, которая оказывает значительное влияние на тембр и громкость звука.

Акустический резонанс.

Аналогичным образом осуществляется «отклик» и в различных электрических системах. Отличие заключается только в том, что в резонанс входят не звуковые колебания, а электромагнитные поля.

Важно! Следует отметить, что явление резонанса возможно только в цепи переменного тока.

В чем заключается явление резонанса напряжений

Как известно, в сети переменного тока домашней сети разность потенциалов изменяется с частотой 50 Гц. То есть, каждую секунду производится 50 полных колебаний. Такое явление несложно замерить даже бытовым частотомером, который определить точное значение этого параметра именно по эффекту электромагнитного поля, образованного вокруг проводника с током. Катушка с металлическим сердечником, которая устанавливается в измерительный прибор, будет колебаться с частотой электромагнитного поля домашней электросети.

Вам это будет интересно  Миллиамперы в амперыЧастотомер

Таким образом, вырабатывается переменное напряжение, которое затем может быть увеличено, а его частота подсчитана микропроцессорным либо аналоговым устройством, после чего информация может быть выведена на экран.

Разобравшись, в чем заключается явление резонанса электрического напряжения, необходимо стараться всячески избегать этого явления, когда одновременные колебательные движения полей являются нежелательными. Если же в каком-либо устройстве такой эффект применяется с целью получения определенных физических явлений, то схема должна быть изготовлена с высокой добротностью, чтобы на поддержание процесса тратилось как можно меньше энергии (таким образом повышается КПД устройства).

Принцип действия резонансов токов

Если необходимо намеренно создать это явление, то достаточно подключить параллельно сопротивление, индуктивность и ёмкость. Для генерации этого явления следует подавать по проводникам только переменное напряжение. Если номиналы элементов были правильно рассчитаны, то в неразветвлённой части цепи образуется ток, который будет полностью совпадать по фазе и напряжению.

Схема резонансного контура

Частным примером генератора резонанса является колебательный контур радиоприёмника. В таких устройствах, с помощью поворотного механизма, изменяется ёмкость, что и вызывает настройку устройства приёма сигнала на определенную частоту.

Важно! Передающие радиостанции, как правило, всегда настроены на одну какую-либо частоту несущей волны.

Параметры резонанса

Значение амплитудно-частотных характеристик может изменяться в очень широких пределах. В технике для осуществления беспроводной связи явление этого типа принято выражать в децибелах (дБ). Колебательные контуры также могут иметь амплитудно-частотные характеристики. Этот параметр представляет собой отношение зависимости реакционной амплитуды и входящего воздействия.

Важно! Взаимосвязь фаз колебаний с частотой принято называть фазочастотной характеристикой.

Проходящий через систему электрический сигнал также может быть точно определен и зафиксирован. Прежде всего, отображаются такие характеристики, как напряжение и частота.

Какие последствия резонанса напряжений

Если в электрической системе с ёмкостью, индуктивностью и сопротивлением не учитывать воздействие этого явления, то работа устройств может быть нестабильной. Если этот эффект носит паразитический характер, то от него следует обязательно избавляться. Увеличение напряжения вследствие возникновения резонансного явления в цепи переменного напряжения может привести к выходу элементов из строя.

При перегреве вследствие резонанса напряжений электротехника может не только выйти из строя, но и загореться.

Возгорание электрической подстанции

На крупных производственных объектах такое явление может привести к аварии с человеческими жертвами. Если высоковольтные линии электропередач находятся слишком близко, то эффект электрического резонанса может возникать и в системах этого типа.

Шунтирующие генераторы ЛЭП

Чтобы защитить ЛЭП от негативного воздействия этого явления применяются шунтирующие генераторы, которые устанавливаются через каждые 300 – 400 км.

Область применения

Это явление в цепи колебательного контура имеет тенденцию к затуханию. Чтобы стало возможным использовать это явление в различных приборах и устройствах, необходимо постоянно поддерживать характеристики электричества в заданных пределах. Сделать этот процесс постоянным очень просто: достаточно подпитывать систему переменным напряжением с постоянными значениями частоты.

Радиовышка

Важно! Эффект резонанса широко применяется в различных радиопередающих и принимающих сигнал устройствах.

Наиболее часто, это явление используется в различных фильтрах. Например, если на пути входящего электрического сигнала необходимо избавиться от составляющей определённой частоты, то параллельно проводнику устанавливают конденсатор, резистор и дроссель. Если фильтр необходим для того, чтобы «пропустить» сигнал определенной частоты, то также изготавливается фильтр из ёмкости, сопротивления и индуктивности, но подключается такая система последовательно.

Электрический фильтр

Использовать эффект резонанса можно и для повышения напряжения. Например, в ситуации, когда электрический двигатель не способен работать на расчетных показателях мощности по причине низкого напряжения, достаточно установить по мощному конденсатору на каждую фазу, чтобы полностью разрешить проблему.

Резонанс в электрической цепи может возникать при наличии определенных условий, поэтому от него можно избавиться либо вызвать намеренно. Если такое явление является нежелательным, то, во многих случаях, достаточно изменить рабочую частоту или увеличить сопротивление, чтобы полностью устранить это паразитическое явление. Простейшая система этого типа состоит из конденсатора, резистора и дросселя, поэтому, при необходимости, можно легко собрать устройство, в котором это электрический эффект будет выполнять какую-либо полезную функцию.

Вам это будет интересно  Обозначение разного электрооборудованья на схемах

Источник: https://rusenergetics.ru/polezno-znat/rezonans-v-elektricheskoy-tsepi

Явление резонанса и его возникновение. Примеры резонанса в механике, акустике, электрических цепях и атомах молекул

Что такое резонанс в электрической цепи?

Под явлением резонанса стоит понимать мгновенный рост величины амплитуды колебаний объекта под воздействием внешнего источника энергии периодического характера воздействия с аналогичным значением частоты.

В статье мы рассмотрим природу возникновения резонанса на примере механического (математического) маятника, электрического колебательного контура и ядерного магнитного резонатора. Для того, чтобы проще представить физические процессы, статья сопровождается многочисленными вставками в виде практических примеров. Цель статьи — объяснить на примитивном уровне явление резонанса в разных областях его возникновения без математических формул.

Самая простая модель, которая может наглядно показать колебания, это простейший маятник, а точнее математический маятник. Колебания разделяют на свободные и вынужденные. Первоначально воздействующая энергия на маятник обеспечивает в теле свободные колебания без присутствия внешнего источника переменной энергии воздействия. Данная энергия может быть как кинетической, так и потенциальной.

Здесь не имеет значение насколько сильно или нет качается сам маятник, — время, потраченное на прохождения его пути в прямом и обратном направлении, сохраняется неизменным. Во избежание недоразумений с затуханием колебаний вследствие трения о воздух стоит выделить, что для свободных колебаний должны соблюдаться условия возврата маятника в точку равновесия и отсутствия трения.

Возникающая естественная частота тела под воздействием первоначально приложенной силы называется резонансной частотой.

Все тела, которым свойственны колебания, совершают их с заданной частотой. Для поддержания в теле незатухающих колебаний необходимо обеспечить постоянную периодическую энергетическую «подпитку». Это достигается воздействием в одновременный такт колебаний тела постоянной силы с определенным периодом. Таким образом возникающие колебания в теле под действием периодической силы снаружи называют вынужденными.

В какой-то момент внешних воздействий возникает резкий скачок амплитуды. Такой эффект возникает если периоды внутренних колебаний тела совпадают с периодами внешней силы и называется резонансом. Для возникновения резонанса достаточно совсем небольших величин внешних источников воздействия, но с обязательным условием повторения в такт. Естественно, при фактических расчетах в земных условиях не стоит забывать о действии сил трения и сопротивления воздуха на поверхность тело.

Начнем с примера возникновения резонанса с которым сталкивался каждый из нас — это обычные качели на детской площадке.

В ситуации с детскими качелями в момент приложения рукой силы при прохождения одной из двух симметричных высших точек возникает скачек амплитуды с соответствующим ростом энергии колебания. В быту явление резонанса могли наблюдать в ванной комнате любители вокала.

Что такое спектрография

Взаимная связь между атомами в молекуле не строго жесткая, при изменении которой молекула переходит в состояние колебания. Частота колебаний взаимных связей атомов меняет соответственно резонансную частоту молекул. С помощью излучения электромагнитных волн в ИК спектре можно вызвать вышеуказанные колебания атомных связей. Данный метод под названием инфракрасная спектрография используется в научных лабораториях для изучения состава исследуемого материала.

Источник: https://www.sciencedebate2008.com/yavleniye-rezonansa-i-yego-vozniknoveniye-primery-rezonansa/

Что такое резонанс токов и напряжений

Что такое резонанс в электрической цепи?

Простое объяснение явления резонанса токов и напряжений. Условия возникновения резонанса и его применение на практике.

Явление резонанса токов и напряжений наблюдается в цепях индуктивно-емкостного характера. Это явление нашло применение в радиоэлектронике, став основным способов настройки приемника на определенную волну. К сожалению, резонанс может нанести вред электрооборудованию и кабельным линиям. В физике резонансом является совпадение частот нескольких систем. Давайте рассмотрим, что такое резонанс напряжений и токов, какое значение он имеет и где используется в электротехнике.

Читайте также  Какое освещение должно быть на кухне?

Реактивные сопротивления индуктивности и емкости

Индуктивностью называется способность тела накапливать энергию в магнитном поле. Для нее характерно отставание тока от напряжения по фазе. Характерные индуктивные элементы — дросселя, катушки, трансформаторы, электродвигатели.

Емкостью называются элементы, которые накапливают энергию с помощью электрического поля. Для емкостных элементов характерно отставание по фазе напряжения от тока. Емкостные элементы: конденсаторы, варикапы.

Приведены их основные свойства, нюансы в пределах этой статьи во внимание не берутся.

Кроме перечисленных элементов другие также имеют определенную индуктивность и емкость, например в электрических кабелях распределенные по его длине.

Емкость и индуктивность в цепи переменного тока

Если в цепях постоянного тока емкость в общем смысле представляет собой разорванный участок цепи, а индуктивность — проводник, то в переменном конденсаторы и катушки представляют собой реактивный аналог резистора.

Реактивное сопротивление катушки индуктивности определяется по формуле:

Векторная диаграмма:

Реактивное сопротивление конденсатора:

Здесь w — угловая частота, f — частота в цепи синусоидального тока, L — индуктивность, C — емкость.

Векторная диаграмма:

Стоит отметить, что при расчете соединенных последовательно реактивных элементов используют формулу:

Обратите внимание, что емкостная составляющая принимается со знаком минус. Если в цепи присутствует еще и активная составляющая (резистор), то складывают по формуле теоремы Пифагора (исходя из векторной диаграммы):

От чего зависит реактивное сопротивление? Реактивные характеристики зависят от величины емкости или индуктивности, а также от частоты переменного тока.

Если посмотреть на формулу реактивной составляющей, то можно заметить, что при определенных значениях емкостной или индуктивной составляющей их разность будет равна нулю, тогда в цепи останется только активное сопротивление. Но это не все особенности такой ситуации.

Резонанс напряжений

Если последовательно с генератором соединить конденсатор и катушку индуктивности, то, при условии равенства их реактивных сопротивлений, возникнет резонанс напряжений. При этом активная часть Z должно быть как можно меньшей.

Стоит отметить, что индуктивность и емкость обладает только реактивными качествами лишь в идеализированных примерах. В реальных же цепях и элементах всегда присутствует активное сопротивление проводников, хоть оно и крайне мало.

При резонансе происходит обмен энергией между дросселем и конденсатором. В идеальных примерах при первоначальном подключении источника энергии (генератора) энергия накапливается в конденсаторе (или дросселе) и после его отключения происходят незатухающие колебания за счет этого обмена.

Напряжения на индуктивности и емкости примерно одинаковы, согласно закону Ома:

U=I/X

Где X — это Xc емкостное или XL индуктивное сопротивление соответственно.

Цепь, состоящую из индуктивности и емкости, называют колебательным контуром. Его частота вычисляется по формуле:

Период колебаний определяется по формуле Томпсона:

Так как реактивное сопротивление зависит от частоты, то сопротивление индуктивности с ростом частоты увеличивается, а у ёмкости падает. Когда сопротивления равны, то общее сопротивление сильно снижается, что отражено на графике:

Основными характеристиками контура являются добротность (Q) и частота. Если рассмотреть контур в качестве четырехполюсника, то его коэффициент передачи после несложных вычислений сводится к добротности:

K=Q

А напряжение на выводах цепи увеличивается пропорционально коэффициенту передачи (добротности) контура.

Uк=Uвх*Q

При резонансе напряжений, чем выше добротность, тем больше напряжение на элементах контура будет превышать напряжение подключенного генератора. Напряжение может повышаться в десятки и сотни раз. Это отображено на графике:

Потери мощности в контуре обусловлены только наличием активного сопротивления. Энергия из источника питания берется только для поддержания колебаний.

Коэффициент мощности будет равен:

cosФ=1

Эта формула показывает, что потери происходят за счет активной мощности:

S=P/Cosф

Резонанс токов

Резонанс токов наблюдается в цепях, где индуктивность и емкость соединены параллельно.

Явление заключается в протекании токов большой величины между конденсатором и катушкой, при нулевом токе в неразветвленной части цепи. Это объясняется тем, что при достижении резонансной частоты общее сопротивление Z возрастает. Или простым языком звучит так – в точке резонанса достигается максимальное общее значение сопротивления Z, после чего одно из сопротивлений увеличивается, а другое снижается в зависимости от того растет или снижается частота. Это наглядно отображено на графике:

В общем, всё аналогично предыдущему явлению, условия возникновения резонанса токов следующие:

  1. Частота питания аналогична резонансной у контура.
  2. Проводимости у индуктивности и ёмкости по переменному току равны BL=Bc, B=1/X.

Применение на практике

Рассмотрим, какая польза и вред резонанса токов и напряжений. Наибольшую пользу явления резонанса принесли в радиопередающей аппаратуре. Простыми словами, а схеме приемника установлены катушка и конденсатор, подключенные к антенне. С помощью изменения индуктивности (например, перемещая сердечник) или величины емкости (например, воздушным переменным конденсатором) вы настраиваете резонансную частоту. В результате чего напряжение на катушке повышается и приемник ловит определенную радиоволну.

Вред эти явления могут на нести в электротехнике, например, на кабельных линиях. Кабель представляет собой распределенную по длине индуктивность и емкость, если на длинную линию подать напряжение в режиме холостого хода (когда на противоположном от источника питания конце кабеля нагрузка не подключена). Поэтому есть опасность того, что произойдет пробой изоляции, во избежание этого подключается нагрузочный балласт. Также аналогичная ситуация может привести к выходу из строя электронных компонентов, измерительных приборов и другого электрооборудования – это опасные последствия возникновения этого явления.

Заключение

Резонанс напряжений и токов — интересное явление, о котором нужно знать. Он наблюдается только в индуктивно-емкостных цепях. В цепях с большим активным сопротивлениям он не может возникнуть. Подведем итоги, кратко ответив на основные вопросы по этой теме:

  1. Где и в каких цепях наблюдается явление резонанса?

В индуктивно-емкостных цепях.

  1. Какие условия возникновения резонанса токов и напряжений?

Возникает при условии равенства реактивных сопротивлений. В цепи должно быть минимальное активное сопротивление, а частота источника питания совпадать с резонансной частотой контура.

  1. Как найти резонансную частоту?

В обоих случаях по формуле: w=(1/LC)(1/2)

Увеличив активное сопротивление в цепи или изменив частоту.

Теперь вы знаете, что такое резонанс токов и напряжений, каковы условия его возникновения и варианты применения на практике. Для закрепления материала рекомендуем просмотреть полезное видео по теме:

Материалы по теме:

  • Причины потерь электроэнергии на больших расстояниях
  • Измерение частоты переменного тока
  • Как рассчитать сопротивление провода

Нравится0)Не нравится0)

Источник: https://elektrik-sam.ru/baza-znanij/3731-chto-takoe-rezonans-tokov-i-naprjazhenij.html

Резонанс напряжений: формулировка, условие наступления, применение

Что такое резонанс в электрической цепи?

Резонансные явления наблюдаются в колебательных системах, когда частота собственных колебаний элементов системы совпадает с частотой внешних (вынужденных) колебательных процессов. Данное утверждение справедливо и для цепей с циркулирующим переменным током. В таких электрических цепях при наличии определённых условий возникает резонанс напряжений, что влияет на параметры тока. Явление резонанса в электротехнике может быть полезным или вредным, в зависимости от ситуации, в которой происходит процесс.

Описание явления

Если в некой электрической цепи (см. рис. 1) имеются ёмкостные и индуктивные элементы, которые обладают собственными резонансными частотами, то при совпадении этих частот амплитуда колебаний резко возрастёт. То есть происходит резкий всплеск напряжений на этих элементах. Это может вызвать разрушение элементов электрической цепи.

Рис. 1. Резонанс в электрической цепи

Давайте рассмотрим на этом примере, какие явления будут происходить при подключении генератора переменного тока к контактам схемы. Заметим, что катушки и конденсаторы обладают свойствами, которые можно сравнить с аналогом реактивного резистора. В частности, дроссель в электрической цепи создаёт индуктивное сопротивление. Конденсатор является причиной ёмкостного сопротивления.

Индуктивный элемент вызывает сдвиг фаз, характеризующийся отставанием тока от напряжения на ¼ периода. Под действием конденсатора ток, наоборот, на ¼ периода опережает напряжение.

Другими словами, действие индуктивности противоположно действию на сдвиг фаз ёмкостного сопротивления. То есть катушки индуктивности и ёмкостные элементы по-разному воздействуют на генератор и по-своему корректируют фазовые соотношения между электрическим током и напряжением.

Формула

Общее реактивное сопротивление рассматриваемых нами элементов равно сумме сопротивлений каждого из них. С учётом противоположности действий можно записать: Xобщ = XL — Xc , где XL = ωL — индуктивное реактивное сопротивление, выражение Xc = 1/ωC — это ёмкостное реактивное сопротивление.

На рисунке 2 изображены графики зависимости полного сопротивления цепи и связанной с ним силы тока, от реактивного сопротивления индуктивного элемента. Обратите внимание на то, как падает полное сопротивление при уменьшении реактивной сопротивляемости RL (график б) и как при этом возрастает ток (график в).

Рис. 2. Графики зависимости параметров тока от падения реактивного сопротивления

Электрические цепи, состоящие из последовательно соединённых конденсаторов, пассивный резисторов и катушек индуктивности называют последовательными резонансными (колебательными) контурами (см. рис. 2). Существуют также параллельные контуры, в которых R, L, C элементы подключены параллельно (рис. 3).

Рис. 3. Последовательный колебательный контур Рис. 4. Параллельный колебательный контур

В режиме резонанса мощность источника питания будет рассеиваться только на активных сопротивлениях (в том числе на активном сопротивлении катушки). Для резонансных контуров характерны потери только активной мощности, которая израсходуется на поддержание колебательного процесса. Реактивная мощность на L C — элементах при этом не расходуется. Ток в резонансном режиме принимает максимальное значение:

Величину Q принято называть термином «Добротность контура». Данный параметр показывает, во сколько раз напряжение, возникшее на контактах реактивных элементов, превышает входное напряжение U электрической сети. Для описания соотношения выходного и входного напряжений часто применяют коэффициент K. При резонансе:

K = Uвых / Uвх = UC0 / U = Q

Формулировка

На основании вышеописанных явлений, сформулируем определение резонансного напряжения: «Если общее падение напряжения на ёмкостно-индуктивных элементах равно нулю, а амплитуда тока – максимальна, то такое особое состояние системы называется резонансом напряжений».

Для лучшего понимания явления, немного перефразируем определение: резонансом напряжений является состояние, когда напряжение на CL — цепочке больше чем на входе электрической цепи.

Описанное явление довольно распространено в электротехнике. Иногда с ним борются, а иногда специально создают условия для образования резонанса.

Основными характеристиками всякого резонансного контура являются параметры добротности и частоты [ 1 ].

В случае, если XL = Xc – справедливо равенство: ωL = 1/ωC , отсюда получаем:

Если ω = ω0 – возникает резонанс напряжений. Частоты совпадают в том случае, когда индуктивное сопротивление сравняется с ёмкостным сопротивлением конденсатора. В таких случаях в цепи будет действовать только активное сопротивление R. Наличие реактивных элементов в схеме приводит к увеличению полного сопротивления цепи (Z):

где R – общее активное сопротивление.

Учитывая, что по закону Ома U = I/Z, можно утверждать, что общее напряжение в цепи зависит, в том числе, и от слагаемых индуктивного и ёмкостного сопротивлений.

Читайте также  Отстают электронные часы что делать?

Если бы в рассматриваемой схеме (рис. 1) отсутствовало активное сопротивление R, то значение полного сопротивления Z стремилось бы к 0. Следовательно, напряжение на реактивных элементах при этом возрастает до критического уровня.

Поскольку XL и Xc зависят от частоты входного напряжения, то для возникновения резонанса следует подобрать соответствующую частоту сети, или изменять параметры катушки, либо конденсатора до тех пор, пока резонансные частоты не совпадут. Любое нарушение условий резонанса немедленно приводит к выходу системы из резонансного режима с последующим падением напряжения.

Условия наступления

Резонансные явления наступают только при наличии следующих условий:

  1. Наличие минимального активного сопротивления на участке электрической цепи.
  2. Равенство реактивных сопротивлений, возникших на цепочке LC.
  3. Совпадение входной частоты источника питания с резонансной частотой колебательного контура.

При резонансе в контуре напряжения на его элементах могут повышаться на порядок и больше.

Примеры применения на практике

Классическим примером применения резонанса колебательных контуров является настройка радиоприёмника на частоту соответствующей радиостанции. В качестве рабочего элемента настроечного узла используется конденсатор с регулируемой ёмкостью. Вращение ручки настройки изменяет ёмкость конденсатора, а значит и резонансную частоту контура.

В момент совпадения резонансной частоты с рабочей частотой какой-либо радиостанции возникает резонанс напряжений, в результате которого резко возрастает амплитуда колебаний принятой радиоприёмником частоты. Специальные фильтры отделяют эти колебания от несущих радиочастот, а усилители усиливают полученные сигналы. В динамике появляются звуки, генерируемые передатчиком радиостанции.

Колебательные контуры, построенные на принципе последовательного соединения LC-элементов, применяются в цепях питания высокоомных нагрузок, потребляющих токи повышенного напряжения. Такие же устройства применяют в полосовых фильтрах.

Последовательный резонанс применяют при пониженных напряжениях сети. В этом случае используют реактивную энергию обмоток трансформатора, соединённых последовательно.

Конденсаторы и различные катушки индуктивности (рис. 5) входят в конструкцию практически всех аналоговых устройств. Они используются для настройки фильтров или для управления токами в отдельных узлах.

Катушки индуктивности

Важно знать, что резонансные контуры не увеличивают количество электрической энергии в цепях. Они лишь могут повышать напряжения, иногда до опасных значений. Постоянный ток не причиной резонансных явлений.

Наряду с полезными свойствами резонансных явлений, в практической электротехнике часто возникают ситуации, когда резонанс напряжений приносит вред. В основном это связано с нежелательным повышением параметров тока на участках цепей. Примером могут служить опасное резонансные явления в кабельных линиях без нагрузки, что может привести к пробоям изоляции. Чтобы этого не случилось, на концевых участках таких линий устанавливают балластные нагрузочные элементы.

Источник: https://www.asutpp.ru/rezonans-napryazheniy.html

Резонанс в электрической цепи

Что такое резонанс в электрической цепи?

При определенном сочетании частоты сигнала и реактивного сопротивления образуется резонанс в электрической цепи. Радиолюбители применяют его для настройки на определенную передающую станцию. Конструкторы линий электропередач делают специальные расчеты, чтобы предотвратить броски напряжения и аварийные ситуации. Представленные ниже сведения помогут успешно решать практические задачи на основе особенностей этого явления.

При резонансе в цепи переменного тока резко увеличивается амплитуда сигнала

Причины резонанса

Классический пример с приказом командира идти марширующим солдатам «не в ногу» перед мостом наглядно демонстрирует суть этого явления. Если не использовать такую предосторожность, колебания могут увеличиться до критичного значения, вплоть до разрушения конструкции. Для получения максимальной амплитуды раскачивают в определенном ритме качели. Приведенные примеры демонстрируют существенное увеличение результата при совпадении частот внешнего воздействия и непосредственно самой системы.

Электрический резонанс по своим принципам не отличается от механических аналогов. Он образуется при совпадении частот внешнего сигнала и контура. Функции накопителей энергии выполняют реактивные индукционные и емкостные элементы. Потери (постепенное уменьшение амплитуды) обеспечивает электрическое сопротивление цепи, что аналогично коэффициенту трения.

Принцип резонанса токов

Для создания необходимых условий электро резонанса необходимо создать параллельный контур с тремя типовыми компонентами:

  • сопротивлением (R);
  • емкостью (C);
  • индуктивностью (L).

Схему подключают к источнику питания с напряжением (U)

На определенной частоте суммарные стоки через реактивные элементы (IL, Ic) становятся значительно больше, чем ток источника (I). Это явление называют резонансом тока.

Характеристики резонанса

Внутреннее сопротивление – формула

Это явление образуется при одинаковых реактивных составляющих цепи. Такое распределение позволяет обеспечить равномерную циркуляцию магнитной и электрической составляющих энергии (через индуктивность и конденсатор, соответственно). Такой контур называют «колебательным» по аналогии с механическим маятником.

При достижении определенной резонансной частоты (w) в параллельном (последовательном) контуре импеданс максимален (минимален). Соответствующим образом при изменении электрического сопротивления уменьшается (увеличивается) ток.

Резонанс токов и напряжений

Как рассчитать потребление электрической энергии

Параллельный контур используют, чтобы создать резонанс тока. Для выполнения отмеченных выше условий выбирают равные значения реактивных проводимостей (BL и Bc). По мере увеличения частоты общее сопротивление контура возрастает, что сопровождается уменьшением силы тока.

График изменения тока и проводимости, формулы для расчетов

В последовательном резонансном контуре устанавливают аналогичные функциональные компоненты. Эта схема при достижении резонансной частоты уменьшает сопротивление, что сопровождается существенным увеличением напряжения на реактивных составляющих, по сравнению с электродвижущей силой источника питания.

Резонанс напряжений в цепи переменного тока: график, электрическая схема и формула расчета

RLC-цепь

Для уточнения процессов надо изучить особенности компонентов типовой RLC цепи. Если к источнику переменного тока подсоединить конденсатор, напряжение на его обмотках будет изменяться по аналогии с исходным сигналом. Для расчетов пользуются понятием емкостного сопротивления Xc, которое определяется формулой:

Xc = 1/2π * f * C,

где:

  • f – частота;
  • С – емкость.

По мере роста частоты увеличивается емкостное сопротивление, и уменьшается ток:

I = U/ Xc.

Этот элемент выполняет определенные ограничительные функции. Однако он не рассеивает энергию c преобразованием в тепло как обычное электрическое сопротивление R.

К сведению. Для упрощения здесь рассмотрена идеальная емкость. В действительности каждый электронный компонент создает активное сопротивление току, что в определенной ситуации сопровождается нагревом.

Для расчета влияния индуктивной составляющей применяют формулы:

  • XL = 2π * f * L;
  • I = U/XL;
  • I = U/2π * f * L.

При подключении катушки к источнику питания образуется магнитное поле, которое препятствует прохождению тока. Формулы демонстрируют прямую зависимость сопротивления от частоты и значения индуктивности (L).

Электрический резонанс

Для полноценного изучения (применения) явления надо учитывать полное сопротивление цепи (Z). Вместе с потерями его можно выразить следующей формулой при последовательном подключении функциональных элементов:

Z = √ R2 + (2π * f * L – 1/2π * f * C)2.

По закону Ома:

I = U/Z = U/  √ R2 + (2π * f * L – 1/2π * f * C)2.

Если соблюдается равенство реактивных составляющих, сопротивление уменьшается с одновременным увеличением силы тока. При соблюдении такого условия несложно вычислить резонансную частоту (Fрез):

  • 2π * f * L = 1/2π * f * C;
  • Fрез = 1/2π * √ L*C.

Резонанс напряжений, достигающих максимальной амплитуды

Получить наибольшую амплитуду в последовательном контуре можно с помощью изменения следующих параметров:

  • индуктивности;
  • емкости;
  • частоты.

Значения отдельных компонентов устанавливают с применением рассмотренных выше формул. Так, величину емкости можно вычислить следующим образом:

C = 1/ f2 * L.

Если реактивные компоненты значительно больше активного сопротивления, на клеммах конденсатора или катушки можно получить повышение напряжения, по сравнению с источником.

Резонанс токов через реактивные элементы

В параллельном контуре оперируют с понятиями реактивных проводимостей (BL и Bc). Как и в предыдущем примере, для создания резонансного режима необходимо обеспечить равенство этих параметров. Дополнительным условием является совпадение частот (источника и контура). Ток при резонансе будет проходить только через активное сопротивление R.

Двойственность RLC-контуров

Из представленных сведений можно сделать два вывода с учетом выбранного варианта соединения функциональных компонентов цепи:

  • Последовательный (резонанс напряжений) – минимальное значение импеданса на Fрез, которое в идеальных условиях равно R;
  • Параллельный (резонанс токов) – на Fрез импеданс увеличивается до максимального значения.

Собственная частота резонансного контура

Этот параметр вычисляют по формуле:

w = 1/√ L*C.

Если частота контура совпадает с частотой внешнего сигнала, амплитуда колебаний значительно увеличивается.

Применение резонансного явления

Резонанс в электрических цепях используют для фильтрации сигналов. Выбирают соответствующую схему обработки для ограничения необходимого диапазона либо расширения полосы пропускания.

С помощью последовательного контура можно повысить напряжение питания, если снабжающая организация не обеспечивает стабильность параметров сети. Такие неприятности встречаются при подключении потребителей на дачных участках и в коттеджных поселках, в сравнительно небольших населенных пунктах.

Недостаток ликвидируют конденсаторами, которые добавляют в электрическую цепь. Подобные решения помогают восстановить работоспособность дрели, станка, другого мощного оборудования. Обмотки соответствующего привода выполняют функции индуктивного компонента колебательного контура.

Параллельное подключение конденсаторов компенсирует потери, созданные реактивной мощностью. Этот вариант обеспечивает циркуляцию энергии между накопителем и подключенной обмоткой. Без такого дополнения часть энергии будет бесполезно потребляться сетью питания. Следует подчеркнуть, что счетчик в любом случае фиксирует потребление. Данная модернизация поможет сэкономить на оплате коммунальных услуг.

Резонансные явления способны чрезмерно увеличить силу тока или напряжение. Необходим точный расчет электрических цепей, чтобы предотвратить перегрев и повреждение проводов, короткие замыкания и другие аварийные ситуации.

Использование резонанса напряжений для передачи радиосигнала

Применение последовательного колебательного контура удобно изучать на конкретном примере. При конструировании передающих устройств, например, уменьшение импеданса на определенной частоте позволяет сделать настройку на определенный сигнал. Такую задачу решают с помощью колебательного контура.

Распределение спектра на экране измерительного прибора после обработки фильтром

Точно спроектированный фильтр будет «убирать» паразитные составляющие без дополнительных средств контроля и автоматизации. Такое решение, кроме простоты и минимальной стоимости, обеспечивает экономное потребление энергии генератором сигнала.

Как показано на практических примерах, резонанс может выполнять полезные и вредные функции. Точный расчет поможет создать качественную электрическую цепь с заданными техническими параметрами.

Источник: https://amperof.ru/teoriya/rezonans-v-elektricheskoj-cepi.html

Возникновение резонанса в электрической цепи

Замечание 1

Возникновению резонанса в электрической цепи способствует резкое увеличение амплитуды стационарных собственных колебаний системы при условии совпадения частоты внешней стороны воздействия и соответствующей колебательной резонансной частоты системы.

Схема $RLC$ представляет электрическую цепь с соединенными последовательным или параллельным образом элементами (резистора, индуктора, конденсатора). Название $RLC$ состоит из простых символов электрических элементов: сопротивления, емкости, индуктивности.

Векторная диаграмма последовательной $RLC$-цепи представлена в одной из трех вариаций:

  • емкостной;
  • активной;
  • индуктивной.

В последней вариации резонанс напряжений возникает при условии нулевого сдвига фаз, и совпадении значений индуктивного и емкостного сопротивлений.

Резонанс напряжений

При последовательном соединении активного элемента $r$, емкостного $С$ и индуктивного $L$ в цепях переменного тока может возникать такое физическое явление, как резонанс напряжений. Колебания источника напряжения в этом случае будут равны по частоте колебаниям контура. При этом известна как полезность (например, в радиотехнике) этого явления, так и негативные последствия (для электрических установок большой мощности), например, при резком скачке напряжения в системах возможно возникновение неисправности или даже пожара.

Резонанс напряжений обычно достигается тремя способами:

  • подбором индуктивности катушки;
  • подбором емкости конденсатора;
  • подбором угловой частоты $w_0$.

При этом все значения емкости, частоты и индуктивности определяются с использованием формул:

$L_0 = \frac{1}{w2C}$

$C_0 = \frac{1}{w2L}$

Читайте также  Диф автомат что это такое в электрике?

Частота $w_0$ считается резонансной. При условии неизменности в цепи и напряжения, и активного сопротивления $r$, сила тока при резонансе напряжения в ней окажется максимальной и равной:

$\frac{U}{r}$

Это предполагает полную независимость силы тока от реактивного сопротивления цепи. В ситуации, когда реактивные сопротивления $XC = XL$ по своему значению будут превосходить активное сопротивление $r$, на зажимах катушки и конденсатора появится напряжение, существенно превосходящее напряжение на зажимах цепи.

Кратность превышения на зажимах емкостного и индуктивного элемента напряжения по отношению к сети определяется выражением:

$Q = \frac{U_c0}{U}$

Величина $Q$ характеризует резонансные свойства контура, называясь при этом добротностью контура. Также резонансные свойства характеризуются величиной $\frac{1}{Q}$, то есть — затуханием контура.

Резонанс токов через реактивные элементы

Резонанс токов появляется в электроцепях цепях переменного тока при условии параллельного соединения ветвей с разнохарактерными реактивными сопротивлениями. В резонансном режиме токов реактивная индуктивная проводимость цепи будет равнозначной ее собственной реактивной емкостной проводимости, т.е. $BL = BC$.

Колебания контура, частота которых имеет определённое значение, в данном случае совпадают по частоте с источником напряжения.

Простейшей электроцепью, в которой мы наблюдаем резонанс токов, считается цепь с параллельным соединением конденсатора с катушкой индуктивности.

Поскольку сопротивления реактивности равнозначны по модулю, амплитуды токов $I_c$ и $I_u$ будут одинаковыми и смогут достигать максимальной амплитуды. На основании первого закона Кирхгофа $IR$ равен току источника. Ток источника, иными словами, протекает только через резистор.

При рассмотрении отдельного параллельного контура $LC$, на резонансной частоте его сопротивление оказывается бесконечно большим: $ZL = ZC$.

При установлении гармонического режима с резонансной частотой, в контуре наблюдается обеспечение источником установившейся определенной амплитуды колебаний, а мощность источника тока при этом расходуется исключительно на пополнение потерь в активном сопротивлении.

Таким образом, у последовательной $RLC$ цепи импеданс оказывается минимальным на резонансной частоте и равным активному сопротивлению контура. В то же время, у параллельной $RLC$ цепи импеданс максимальный на резонансной частоте и считается равным сопротивлению утечки, фактически также активному сопротивлению контура. С целью обеспечения условий для резонанса силы тока или напряжения, требуется проверка электрической цепи для предопределения ее комплексного сопротивления или проводимости. Помимо этого, её мнимая часть должна приравниваться к нулю.

Применение явления резонанса

Хороший пример использования резонансного явления представляет электрический резонансный трансформатор, разработанный Николой Тесла ещё в 1891 году. Ученый проводил эксперименты на разных конфигурациях, состоящих в сочетании из двух, а зачастую и трех резонансных электроцепей.

Замечание 2

Термин «катушки Теслы» применяют к высоковольтным резонансным трансформаторам. Устройства используют при получении высокого напряжения, частоты переменного тока. Обычный трансформатор необходим для эффективной передачи энергии с первичной на вторичную обмотку, резонансный используется для временного хранения электроэнергии.

Устройство отвечает за управление воздушным сердечником настроенного резонансно трансформатора с целью получения высоких напряжений при малых значениях силы токов. Каждая обмотка обладает емкостью и функционирует в качестве резонансного контура. Для произведения наибольшего выходного напряжения первичный и вторичный контуры настраивают в резонанс друг с другом.

Источник: https://spravochnick.ru/fizika/elektricheskie_cepi_-_chto_eto/rezonans_v_elektricheskoy_cepi/

В какой цепи возникает резонанс токов?

Что такое резонанс в электрической цепи?

Знание физики и теории этой науки напрямую связано с ведением домашнего хозяйства, ремонтом, строительство и машиностроением. Предлагаем рассмотреть, что такое резонанс токов и напряжений в последовательном контуре RLC, какое основное условие его образования, а также расчет.

Что такое резонанс?

Определение явления по ТОЭ: электрический резонанс происходит в электрической цепи при определенной резонансной частоте, когда некоторые части сопротивлений или проводимостей элементов схемы компенсируют друг друга. В некоторых схемах это происходит, когда импеданс между входом и выходом схемы почти равен нулю, и функция передачи сигнала близка к единице. При этом очень важна добротность данного контура.

Соединение двух ветвей при резонансе

Признаки резонанса:

  1. Составляющие реактивных ветвей тока равны между собой IPC = IPL, противофаза образовывается только при равенстве чистой активной энергии на входе;
  2. Ток в отдельных ветках, превышает весь ток определенной цепи, при этом ветви совпадают по фазе.

Иными словами, резонанс в цепи переменного тока подразумевает специальную частоту, и определяется значениями сопротивления, емкости и индуктивности. Существует два типа резонанса токов:

  1. Последовательный;
  2. Параллельный.

Для последовательного резонанса условие является простым и характеризуется минимальным сопротивлением и нулевой фазе, он используется в реактивных схемах, также его применяет разветвленная цепь.

Параллельный резонанс или понятие RLC-контура происходит, когда индуктивные и емкостные данные равны по величине, но компенсируют друг друга, так как они находятся под углом 180 градусов друг от друга. Это соединение должно быть постоянно равным указанной величине. Он получил более широкое практическое применение.

Резкий минимум импеданса, который ему свойствен, является полезным для многих электрических бытовых приборов. Резкость минимума зависит от величины сопротивления.

Схема RLC (или контур) является электрической схемой, которая состоит из резистора, катушки индуктивности, и конденсатора, соединенных последовательно или параллельно. Параллельный колебательный контур RLC получил свое название из-за аббревиатуры физических величин, представляющих собой соответственно сопротивление, индуктивность и емкость.

Схема образует гармонический осциллятор для тока. Любое колебание индуцированного в цепи тока, затухает с течением времени, если движение направленных частиц, прекращается источником. Этот эффект резистора называется затуханием. Наличие сопротивления также уменьшает пиковую резонансную частоту.

Некоторые сопротивление являются неизбежными в реальных схемах, даже если резистор не включен в схему.

Применение

Практически вся силовая электротехника использует именно такой колебательный контур, скажем, силовой трансформатор. Также схема необходима для настройки работы телевизора, емкостного генератора, сварочного аппарата, радиоприемника, её применяет технология «согласование» антенн телевещания, где нужно выбрать узкий диапазон частот некоторых используемых волн. Схема RLC может быть использована в качестве полосового, режекторного фильтра, для датчиков для распределения нижних или верхних частот.

Резонанс даже использует эстетическая медицина (микротоковая терапия), и биорезонансная диагностика.

Принцип резонанса токов

Мы можем сделать резонансную или колебательную схему в собственной частоте, скажем, для питания конденсатора, как демонстрирует следующая диаграмма:

Схема для питания конденсатора

Переключатель будет отвечать за направление колебаний.

Схема: переключатель резонансной схемы

Конденсатор сохраняет весь ток в тот момент, когда время = 0. Колебания в цепи измеряются при помощи амперметров.

Схема: ток в резонансной схеме равен нулю

Направленные частицы перемещаются в правую сторону. Катушка индуктивности принимает ток из конденсатора.

Когда полярность схемы приобретает первоначальный вид, ток снова возвращается в теплообменный аппарат.

Теперь направленная энергия снова переходит в конденсатор, и круг повторяется опять.

В реальных схемах смешанной цепи всегда есть некоторое сопротивление, которое заставляет амплитуду направленных частиц расти меньше с каждым кругом. После нескольких смен полярности пластин, ток снижается до 0. Данный процесс называется синусоидальным затухающим волновым сигналом. Как быстро происходит этот процесс, зависит от сопротивления в цепи. Но при этом сопротивление не изменяет частоту синусоидальной волны. Если сопротивление достаточно высокой, ток не будет колебаться вообще.

Обозначение переменного тока означает, что выходя из блока питания, энергия колеблется с определенной частотой. Увеличение сопротивления способствует к снижению максимального размера текущей амплитуды, но это не приводит к изменению частоты резонанса (резонансной). Зато может образоваться вихретоковый процесс. После его возникновения в сетях возможны перебои.

Расчет резонансного контура

Нужно отметить, что это явление требует весьма тщательного расчета, особенно, если используется параллельное соединение. Для того чтобы в технике не возникали помехи, нужно использовать различные формулы. Они же Вам пригодятся для решения любой задачи по физике из соответствующего раздела.

Очень важно знать, значение мощности в цепи. Средняя мощность, рассеиваемая в резонансном контуре, может быть выражена в терминах среднеквадратичного напряжения и тока следующим образом:

R ср= I2конт * R = (V2конт / Z2) * R.

При этом, помните, что коэффициент мощности при резонансе равен cos φ = 1

Сама же формула резонанса имеет следующий вид:

ω0 = 1 / √L*C

Нулевой импеданс в резонансе определяется при помощи такой формулы:

Fрез = 1 / 2π √L*C

Резонансная частота колебаний может быть аппроксимирована следующим образом:

F = 1/2 р (LC) 0.5

Где: F = частота

L = индуктивность

C = емкость

Как правило, схема не будет колебаться, если сопротивление (R) не является достаточно низким, чтобы удовлетворять следующим требованиям:

R = 2 (L / C) 0.5

Для получения точных данных, нужно стараться не округлять полученные значения вследствие расчетов. Многие физики рекомендуют использовать метод, под названием векторная диаграмма активных токов. При правильном расчете и настройке приборов, у Вас получится хорошая экономия переменного тока.

Источник: https://www.asutpp.ru/rezonans-peremennogo-elektricheskogo-toka.html

Резонанс токов: в цепи переменного тока и напряжения

Многие люди, изучая электронику и все, что с ней связано, сталкиваются с таким понятием как резонанс токов. Что оно собой представляет, при каких условиях возникает резонанс токов, как используется и как его правильно подсчитать? Об этом далее.

Что это такое

Резонанс токов — разновидность состояния электрической цепи, когда общий вид токовых показателей совпадает по фазам уровню напряжения, а мощность реактивного вида равна нулю или же она представлена в активном виде.

. Резонанс токов

Этот вариант развития событий характерен для переменного тока и имеет не только положительные свойства, но и некоторые нежелательные последствия. Так, благодаря резонансу работает радиотехника, автоматика и проволочная телефония, но в то же время возникают перенапряжения и сбои в работе электрической системы.

Определение из учебного пособия

При каких условиях возникает

Условием того, чтобы возникло это явление, является равные показатели проводниковой частоты, где BL=BC. То есть емкостная с индуктивной проводимостью должна быть равна. Только тогда подобное явление резонанса токов наблюдается в электрической цепи. Он при этом может быть как положительным, так и отрицательным. В любом радиоприемнике есть колебательный контур, который из-за индуктивного или емкостного изменения, настраивается на нужный сигнал радиоволны. В другом случае, это ведет к тому, что появляются скачки напряжения или ток в цепи и появляется аварийная ситуация.

В условиях лаборатории, он возникает во время, когда изменяется емкость и не изменяется индуктивность катушки L. В таком случае формула выглядит как Bc=C

При каких условиях возникает

Как используется

Резонансные токи используются сегодня в некоторых фильтрующих системах, радиотехнике, электричестве, радиостанциях, асинхронных двигателях, высокоточных электрических сварных установках, колебательных генераторных электрических контурах и высокочастотных приборах. Нередко, когда они применяются, чтобы снизить генераторную нагрузку.

Обратите внимание! Простейшая цепь, где наблюдаются они, это параллельного вида колебательный контур. Такие контуры используются в современном промышленном индукционном котловом оборудовании и улучшают показатели КПД.

Сфера применения

Принцип действия

Токовый резонанс можно заметить во внутренней поверхности электрической цепи, которая имеет параллельное катушечное, резисторное и конденсаторное подсоединение. Главный принцип того, как работает стандартный аппарат, не сложен в понимании.

Когда включается электрическое питание, внутри конденсаторной установки накапливается заряд до номинального напряжения. В этом время отключается питающий источник и замыкается цепь в контур. Этот момент сопровождается переносом разряда на часть катушки.

Далее показатели тока, которые проходят по катушке, генерируют магнитное поле. Создается электродвижущая самостоятельная индукционная сила по направлению встречному току. При полном конденсаторном разряде максимально увеличиваются токовые показатели. Объем энергии становится магнитным индукционным полем.

Источник: https://aspenergo.ru/v-kakoy-tsepi-voznikaet-rezonans-tokov/