Содержание
Постоянная и переменная электрическая цепь
В электротехнике изучаются принципы действия и устройства основных электротехнических приборов, которые используются в быту и промышленности. Чтобы любое электротехническое устройство работало, должна создаваться электрическая цепь. Основное задачей цепи является передача электрической энергии и обеспечение устройству необходимого режима работы.
Электрическая цепь: понятие и основные элементы
Электрическая цепь – это совокупность различных объектов и устройств, которые образуют путь для нормального протекания электрического тока. Электромагнитные процессы в цепях могут описываться при помощи понятий об электродвижущей силе, электрическом токе и электрическом напряжении.
Для того чтобы проводить расчеты и анализ, электрическую цепь можно представить в виде электрической схемы, которая состоит из условных обозначений ее элементов и способов их соединения.
Все устройства и элементы, которые входят в состав электрической цепи, условно можно классифицировать на несколько групп:
- Источники электрического питания (энергии). Общее свойство всех источников питания – это преобразование любых видов энергии в электрическую. Источники, в которых осуществляется трансформация неэлектрической энергии в электрическую, называются первичными. Вторичными источниками являются те, в которых и на выходе, и на входе электрическая энергия. В качестве примера можно привести выпрямительные устройства.
- Потребители электроэнергии. Общее свойство всех потребителей электрической энергии – это трансформация электроэнергии в другие виды энергии. Пример – нагревательный прибор. Иногда потребители электроэнергии называют нагрузкой.
- Вспомогательные элементы электрической цепи. Сюда можно отнести коммуникативные устройства, соединительные провода, защитную аппаратуру, а также измерительные приборы, без которых электрическая цепь не функционирует.
- Курсовая работа 420 руб.
- Реферат 270 руб.
- Контрольная работа 210 руб.
Все элементы электрической цепи охватываются одним электромагнитным процессом.
Электрическая цепь с постоянным током
В электрической цепи постоянного тока электродвижущая сила, которая направлена внутрь источника электроэнергии от отрицательного полюса к положительному, возбуждает электрический ток такого же направления. Его можно определить по закону Ома для всей цепи:
$I = \frac {E}{R + R_{BT}}$, где:
- $R$ — это сопротивление внешней цепи, которая состоит из соединительных проводов и приемника;
- $ R_{BT} $ — сопротивление внутренней цепи, которая состоит из источника электрической энергии.
Определение 1
Если все элементы электрической цепи и их сопротивления не зависят от направления и значения тока и электродвижущей силы, то такие элементы называют линейными.
Стоит отметить, что в одноконтурной постоянной электрической цепи, что имеет один источник электрической энергии, ток прямо пропорционален электродвижущей силе и обратно пропорционален сопротивлению цепи.
Из этого следует, что $E-R_{BT} L = RI$, откуда:
$I = \frac {(E – R_{BT} l)}{R}$ или $I = \frac {U}{R} $, где:
$U = E – R_{BT} l$ — это напряжение источника электроэнергии, которое направляется от положительного полюса к отрицательному.
При неизменной электродвижущей силе, напряжение зависит только от электрического тока, который определяет падение напряжения $ R_{BT} l$ внутри источника электроэнергии, но только в том случае, если сопротивление внутренней электрической цепи $ R_{BT} = const $.
Выражение $I = \frac {U}{R} $ — это закон Ома для участка электрической цепи, к зажимам которого приложено напряжение $U$, что совпадает с электрическим током $I $ этого же участка цепи.
Зависимость напряжения от электрического тока $U (I)$ при $E — const$ и $ R_{BT} = const $ называется внешней (вольтамперной характеристикой линейного источника электроэнергии). По данной характеристике можно определить соответствующее напряжение для любого тока, а по формулам, что приведены ниже, — рассчитать мощность приемника электроэнергии:
$P_2 = RI2 = \frac {E2R}{(R + R_{BT} )2}$
Мощность источника электроэнергии:
$P_1 = (R + R_{BT} ) I2 = \frac {E2}{R + R_{BT} }$
КПД установки в цепи постоянного тока:
$\eta = \frac {P_2}{P_1} = \frac {R}{R + R_{BT} } = \frac {1}{ 1 +\frac {R_{BT} }{R}} $
Точка Х вольтамперной характеристики источника электроэнергии соответствует режиму холостого хода при разомкнутой электрической цепи. В таком случае электрический ток $l_X = 0$, а напряжение $U_X = E$.
Точка К необходима для того, чтобы охарактеризовать режим короткого замыкания, который возникает при соединении зажимов источников электроэнергии. Внешнее сопротивление приравнивается нулю $R=0$. В этом случае формируется электрический ток короткого замыкания $I_K = \frac {E}{R_{BT} }$, который в несколько раз превышает номинальный ток $I_HOM$. Это случается по причине того, что внутреннее сопротивление источника электроэнергии $R_{BT}
Точка С соответствует согласованному режиму, при котором сопротивление внешней электрической цепи приравнивается сопротивлению внутренней цепи $ R_{BT} $ источника электроэнергии. В таком режиме формируется электрический ток $I_c = \frac {E}{2R_{BT} }$ внешней цепи и отвечает наибольшей мощности $R2_max = \frac {E2}{4R_{BT} }$. Коэффициент полезного действия в таком случае приравнивается нулю: $\eta c = 0$.
Учитывая все вышеизложенное, согласован режим, при котором:
$\frac {P2}{P2_max} = \frac {4R2}{(R + R_{BT} )2} = 1$ и $I_c = \frac {E}{2R} = 1$
Режимы электрических цепей в электроэнергетических установках значительно отличаются от согласованного режима и характеризуются токами, которые обуславливают сопротивление приемников $R$ и $ R_{BT} $. В результате этого работа систем на высоком КПД.
Изучение явлений, которые протекают в электрических цепях, упрощается, если происходит их замена на схемы замещения. Эти схемы представлены в виде математических моделей с идеальными элементами. Данные схемы подробно отображают свойства электрической цепи и при соблюдении конкретных условий делают анализ электрического состояния цепей значительно проще.
Электрическая цепь с переменным током
Практически во всех случаях электрическая энергия производится, перераспределяется и потребляется в виде электрической энергии переменного тока.
Замечание 1
Переменный ток нашел широкое применение в различных областях техники. Это все объясняется легкостью его получения, распределения, преобразования, а также простотой устройства двигателей и генераторов переменного тока, удобством их эксплуатации и надежностью работы.
Переменный ток меняет свое направление и значение определенное количество раз в секунду. Электроны при переменном токе движутся сначала в одном направлении вдоль провода, после чего останавливаются на мгновение и движутся в обратную сторону. В проводе электроны совершают колебательные движения. Из-за своей малой скорости ($V_{эл} = 10{-4} м/с = 0,1 мм/с$) при таких колебаниях электроны успевают сделать лишь небольшие передвижения вдоль провода.
Чаще всего встречается синусоидальный переменный ток: изменение электрических величин (силы тока, электродвижущей силы, напряжения) показывают со временем плавную кривую линию, что называется синусоидой.
Определение 2
Электрические цепи, в которых направление электродвижущей силы, тока и напряжения периодически изменяются по синусоидальному закону, получили название «цепи синусоидального тока». Иногда их называют цепями переменного тока.
Для переменного тока выбирается синусоидальная форма, поскольку она обеспечивает экономное производство, распределение, использование и передачу электрической энергии. Именно переменная форма электрических величин остается неизменной во всех участках цепи. Иными словами, все емкостные и индуктивные элементы, которые входят в состав электрической цепи, не меняют синусоидальной формы напряжения и тока.
Электрические цепи с переменным током, по сравнению с цепями постоянного тока, имеют множество особенностей, которые определяются:
- в первую очередь тем, что в состав электрических цепей переменного тока входят новые элементы: конденсаторы, трансформаторы, индуктивные катушки;
- тем, что переменный ток и напряжение в данных элементах порождают переменные магнитные и электрические поля, которые приводят к формированию явления самоиндукции, токов смещения и взаимной индукции.
Все вышеперечисленные особенности оказывают ощутимое воздействие на процессы, протекающие в электрической цепи. Анализ процессов в таких цепях значительно усложняется. Большое значение для цепи переменного тока играет частота f. От ее значения зависит влияние индуктивностей и емкостей на процессы в электрической цепи.
Особенности цепей переменного тока обуславливают ряд специфических и новых явлений:
- явление резонанса;
- сдвиг фаз;
- возникновение реактивных мощностей.
Источник: https://spravochnick.ru/fizika/elektricheskie_cepi_-_chto_eto/postoyannaya_i_peremennaya_elektricheskaya_cep/
Электрическая цепь
Электрическая цепь – набор разнородных элементов, соединенных проводниками, предназначенный для протекания тока. Ассортимент составляющих широкий. Элементы выпускают линейные, нелинейные, активные, пассивные. Классификация бессильна охватить возможные случаи.
Состав электрической цепи
Электрическая цепь включает (в общем случае): источник питания, рубильник (выключатель), соединительные провода, потребителей. Обязательно сформируйте замкнутый контур. В противном случае по цепи не сможет течь ток. Электрическими не принято называть контуры заземления, зануления. Однако по сути считаются таковыми, иногда здесь течет ток. Замыкание контура при заземлении, занулении обеспечивается посредством грунта.
Источники питания. Внутренняя, внешняя электрическая цепь
Для образования упорядоченного движения носителей заряда, формирующего ток, потрудитесь создать разность потенциалов на концах участка. Достигается подключением источника питания, который в физике принято называть внутренней электрической цепью. В противовес прочим элементам, составляющим внешнюю. В источнике питания заряды движутся против направления поля. Достигается приложением сторонних сил:
- Обмотка генератора.
- Гальванический источник питания (батарейка).
- Выход трансформатора.
Напряжение, формируемое на концах участка электрической цепи, бывает переменным, постоянным. Сообразно в технике принято контуры делить соответствующим образом. Электрическая цепь предназначена для протекания постоянного, переменного тока. Упрощенное понимание, закон изменения упорядоченного движения носителей заряда воспринимается сложным. С трудом понимаем, переменный в цепи ток или постоянный.
Помимо упорядоченного движения носители характеризуются хаотичным тепловым движением. Скорость (интенсивность) определена температурой, родом материала, некоторыми другими факторами. В образовании электрического тока вид движения участия фактически не принимает.
Род тока определен источником, характером внешней электрической цепи. Гальванический элемент дает постоянное напряжение, обмотки (трансформаторы, генераторы) – переменное. Связано с протекающими в источнике питания процессами.
Сторонние силы, обеспечивающие движения зарядов, называют электродвижущими. Численно ЭДС характеризуется работой, совершаемой генератором для перемещения единичного заряда. Измеряется вольтами. На практике для расчета цепей удобно делить источники питания двумя классами:
- Источники напряжения (ЭДС).
- Источники тока.
В действительности неизвестны, имитацию пытаются создать практики. В розетке ожидаем увидеть 230 вольт (220 вольт по старым нормативам). Причем ГОСТ 13109 однозначно устанавливает пределы отклонения параметров от нормы. В быту пользуемся источником напряжения. Параметр нормируется. Величина тока не играет значения. Напряжение подстанции круглые сутки стремятся сделать постоянным вне зависимости от текущего запроса потребителей.
В противовес источник тока поддерживает заданный закон упорядоченного движения носителей заряда. Значение напряжения роли не играет. Ярким примером подобного рода устройств выступает сварочный аппарат на базе инвертора. Каждый знает: диаметр электрода прочно связан с толщиной металла, прочими факторами. Чтобы процесс сварки шел правильно, приходится с высокой степенью постоянства поддерживать ток. Задачу решает электронный блок на основе инвертора.
Ток, напряжение бывают постоянными, переменными. Закон изменения параметра роли не играет. Неважно, подключать ли электрическую цепь к источнику постоянного, переменного напряжения. Однако важно выдержать правильный размер параметра. К примеру, действующее значение ЭДС.
Элементы цепи
Выключатель
Рубильник позволит присоединить источник питания к проводам, потребителю. Каждый (за редким исключением) пользовался настенным выключателем. При замыкании-размыкании электрической цепи возникает искра. Объясняется наличием сопротивления емкостного типа. Для предотвращения искрения цепь дополняется дросселем, рубильник сформирован контакторами специального типа. Придуманы прочие технические решения, к примеру, катушка Тесла.
Провода
В технике провода изготавливают медные, алюминиевые. Связано с низким удельным сопротивлением металлов. Цена невысока. Выделяющееся на проводниках тепло определяется двумя параметрами:
- Сопротивление участка цепи.
- Электрический ток.
Понятно, второй параметр определяется нуждами потребителей. Поставщик стремится влиять на первый. Удельное сопротивление проводника предвидится по возможности низким. Ученых давно интересует явление сверхпроводимости. Металлы при понижении температуры теряют сопротивление. Уменьшаются потери. Среди полупроводников встречаются образцы с положительным и отрицательным температурным коэффициентом сопротивления. Абсолютное значение параметра металлов на порядки ниже.
Проблема с алюминием, медью проста: при протекании электрического тока в цепи температура растет. Повышается сопротивление участка, дополнительно усугубляя ситуацию. Получается замкнутый круг. Ученые считают: затруднение допустимо исправить, заручившись помощью явления сверхпроводимости.
Металл при некоторой низкой температуре резко, рывком снижает сопротивление, достигая нуля (выше рубежа график понижается плавно со скоростью 1/273 1/град). Проблема практического применения в том, что значения, провоцирующие скачок, низкие. Например, для свинца рубеж составляет 7,2 К. Экстремально низкая отрицательная температура по шкале Цельсия.
Ученые видят решение проблемы в открытии материалов, демонстрирующих явление сверхпроводимости при комнатных температурах. Тогда большие токи удастся передавать потребителям, избежав потерь. В электрической цепи, сформированной сверхпроводниками, заряды способны циркулировать бесконечно длительное время без внешней подпитки источником.
Новое явление обнаружил Хейке Камерлинг-Оннес в 1911 году, исследуя образцы ртути, охлаждаемой до весьма низких температур. На четырех градусах Кельвина сопротивление проволоки стало нулевым, до скачка снижалось, плавно следуя прямой. Стало ясно: обнаружено новое состояние материала. Позже явление сверхпроводимости продемонстрировано на образцах других металлов. Показано: эффект разрушается помещением подопытного вещества в сильное магнитное поле. Самой высокой пороговой температурой среди металлов похвастается технеций (11,3 К).
Явление сверхпроводимости при комнатных температурах
У искусственных материалов показатели намного выше. С 1986 года ученые исследуют разнообразные керамики. Последним подтвержденным фактом считаем сведения о наличии композитных материалов на основе окислов ртути с температурой перехода в новое состояние на границе 140 К. Дальнейшие работы по очевидным соображениям засекречены.
Потребители
Под потребителем электрической цепи понимается не относящееся к элементам, перечисленным выше. Полезной нагрузкой служат обыкновенная лампочка накала, спираль нагревательного прибора, электрический двигатель. Параметры цепи очень сильно зависят именно от потребителей. Например, обмотки трансформаторов наделены сильно выраженным индуктивным сопротивлением. Негативно сказывается на передаче энергии от источника.
Не только ток меняет направление. Иногда утверждение касается мощности. Энергия начинает циркулировать туда-сюда, направляясь к источнику питания, обратно во внешнюю цепь. Реактивная мощность бессильна выполнить полезную работу, разогревает проводники цепи, искажает форму полезного сигнала. Промышленникам, ведущим учет полного потребления, рекомендуется параллельно двигателям включать компенсирующие конденсаторы. Индуктивное сопротивление компенсируется емкостным, реактивная мощность замыкается внутри потребительского сегмента, избегая выходить наружу, не выделяя лишнее тепло на кабелях сети.
Нужно отметить важное свойство индуктивных потребителей: потребляют энергию. Электрический ток становится магнитным полем, передается далее. В двигателях колебания вектора напряженности, создаваемые обмоткой, позволят совершать валу полезную работу. Чтобы показать происходящие траты энергии, схемы дополняют источниками ЭДС (тока), направление действия которых противоположно имеющему место быть во внутренней электрической цепи.
Передачи мощности через емкостную связь сегодня не изобретено. Однако приближенно считаем подобным случаем излучение радиоволны в эфир. Простейший вибратор Герца часто представляют колебательным контуром, в котором обкладки конденсатора разведены в стороны.
Шаг позволит образовываться электромагнитной волне, уносимой эфиром. Что касается передачи больших мощностей, соответствующие планы строил Никола Тесла, каждый видел на фото, стилистическом изображении башню Ворденклиф, напоминающую формой подберезовик с прямой ножкой.
При помощи сети сооружений предполагалось снабжать энергией путем беспроводной связи промышленность, заводы, фабрики.
В курсе электроники преимущественно рассматриваются приемные устройства. Между клеммами антенны передача волны через эфир обозначается схематично источником переменного напряжения малой мощности. Уловленная ЭДС усиливается каскадами, включающими резонансные контуры. Электроника, как никакая другая область техники, включает неимоверное разнообразие потребителей. Упрощенно делится на два класса:
- Активные потребители требуют для корректной работы снабжения электрической энергией. Как правило, не могут питаться непосредственно основной сетью. Микросхемы, дискретные активные элементы: транзисторы, тиристоры. Иными словами, электронные ключи. Электродвигатели принципиально отличаются, снабжаясь питанием входной сети.
- Пассивные потребители не требуют внешнего питания. Однако пропускать ток могут причудливым образом. Некоторые тиристоры открываются при достижении напряжением определенного значения. Следовательно, считаются пассивными приборами, обладают нелинейной характеристикой. К этому семейству относятся диоды, пропускающие ток в одном направлении (демонстрируют вентильные свойства).
Пассивными потребителями являются всевозможные сопротивления, конденсаторы, дроссели (катушки индуктивности). При помощи элементов электрическая цепь приобретает необычные качества. Резонансные контуры конденсаторов, индуктивностей используют фильтрами волн различной частоты.
Источник: https://VashTehnik.ru/enciklopediya/elektricheskaya-cep.html
Соединения электрических цепей на примере электропроводки
Электрическая цепь, являясь совокупностью устройств, по которым течет электрический ток, может иметь несколько видов соединений. Рассматривая на примере электрической проводки в доме, можно отметить, что способы соединения электрической цепи являются базой для типизации видов разводки. И в донном случае определение электрической цепи можно перефразировать как соединенные между собой источник тока, линии передачи и приемник.
Для наглядности рассмотрим самую простую электрическую цепь. Она состоит из источника тока, приемника (лампочка или электродвигатель) и системы передачи (провода). Чтобы данная комбинация стала полноценной цепью, ее элементы должны быть соединены между собой проводниками таким образом, чтобы ток протекал по замкнутой цепи.
Все элементы электрических цепей можно разделить на активные и пассивные. К активным относятся источники тока, аккумуляторы, электродвигатели. Пассивные элементы – соединительные провода и электро приемники (лампочка или иной потребитель). Их общепринятые условные обозначения предназначены для изображения элементов цепи на схемах. Рассмотрим основные из них, так как данная информация пригодится для дальнейшего понимания принципов соединения электрической цепи на примере разводки внутри домовой проводки.
Условные обозначения элементов:
Обозначения элементов электрической цепи
Способы соединения электрической цепи
Разобравшись с терминологией и графическим обозначением элементов, можно перейти к непосредственному рассмотрению способов соединения, представленных в следующей таблице:
При параллельном соединении ни один элемент (приемник) не соединен между собой, но при этом они объединены двумя общими узлами. В этом случае даже при возникновении неисправности одного из потребителей, остальные продолжают работать. Наглядным примером такого соединения может быть подключение двух зон освещения через двухклавишный выключатель, где один проводник (рабочий ноль N) общий, а фаза (L) посредством выключателя разделяется на два проводника L1 и L2. |
При последовательном соединении все элементы цепи располагаются друг за другом и не имеют узлов. Примером служит елочная гирлянду, где большое количество лампочек соединяется одним проводом (если сгорит одна лампочка, цепь разорвется и погаснут все остальные). Другой пример — шлейфовое подключение розеток. |
Типы разводки электропроводки
Информация о соединениях электрической цепи тесно переплетается с темой разводки проводки и дополняет методику электромонтажных работ. Существует несколько типов разводки. Однако, прежде чем перейти к ним, стоит рассмотреть, как формируется разводка в частном доме:
- Питающий кабель входит в распределительный щит здания.
- В щите располагаются группы автоматических устройств защиты.
- Посредством автоматики и распределительных шин кабель далее разводится на зоны (группы потребителей).
- Зоны делятся на две группы: одна предназначена для розеток, другая — для освещения.
- Питающие кабели отдельной зоны заходят в помещение, где для них используются свои варианты расключения. Так, силовая кабельная линия, идущая к розетке, может подключается к другим розеткам данного помещения методом «шлейфа», а осветительная линия может расключаться через распределительную коробку.
Типы расключения электрической проводки:
Тип расключения «звезда» (другие названия бескоробочное, или европейское) схематично выглядит следующим образом: одна розетка — одна линия кабеля до щитка. То есть, каждая розетка и точка освещения имеют отдельную кабельную линию, которая заходит прямо в щиток и подключается к отдельному автоматическому выключателю. Преимущество данной методики — безопасность и возможность контролировать каждую электрическую точку. Также, при такой разводке не требуется устанавливать распределительные коробки. Недостатком бескоробочного подключения является увеличенный расход провода и, соответственно, увеличение трудовых затрат на монтаж системы. |
«Шлейф» по сравнению со «звездой» отличается экономичностью. Изобразить шлейфовое расключение можно следующим образом: электрощит или распределительная коробка — розетка — розетка — розетка. Другими словами, несколько электрических точек последовательно подключаются, и от них общий питающий проводник идет либо к электрощиту, либо к распаечной коробке. Как видно, данный тип расключения проводки — не что иное, как последовательное соединение в разрезе электрической цепи. |
Самый распространенный тип разводки — с использованием распределительных коробок. В этом случае от электрического щита питающий кабель конкретной группы разветвляется между потребителями через распределительные коробки, которые обычно располагаются над выключателем около входа в комнату. |
Смешанное расключение предполагает одновременное применение в одной системе типов «звезда», «шлейф» с использованием распределительных (распаечных) коробок. |
В чистом виде перечисленные типы расключения применяются редко. Как правило, выбирают смешанный вариант. При этом, нужно соблюдать правила соединения электрической цепи.
Источник: https://poweredhouse.ru/sposoby-soedineniya-ehlektricheskih-cepej/
1.2. Электрическая цепь и ее элементы
Электрическаяцепь –совокупностьустройств(элементов), предназначенныхдля направленного движения электрическихзарядов(электрического тока) исвязанных с ним электромагнитныхпроцессов.
Электрическаяцепь служитдля генерирования, передачи и преобразованияэлектрической (электромагнитной) энергиии сигналов.
Основные элементыэлектрической цепи – источники, приемникии линии передачи.
Источникэлектрической энергии и сигналов– устройство,преобразующее различные виды энергиинеэлектромагнитной природы вэлектромагнитную(гальванический элемент, аккумулятор,электромеханический генератор).
Приемникэлектрической энергии и электрическихсигналов –устройство,преобразующее электрическую энергиюв другие виды энергии(электротермические устройства,электрические лампы, резисторы,электрические двигатели).
Линияпередачи электрической энергии иэлектрических сигналов– проводники (материалы, среды, имеющиесвободные заряды) и электромагнитныеполя, с помощью которых осуществляетсяпередача электрической энергии исигналов от источников к приемникам.
Кроме того,элементами электрической цепи могутбыть преобразовательные, коммутационныеи измерительные устройства (приборы).
Преобразовательэлектрической энергии– устройство,преобразующее параметры(напряжение, ток, их форму, величину,частоту) электромагнитнойэнергии(трансформаторы, выпрямители, инверторы,преобразователь частоты).
Коммутационныеустройства предназначены для изменения режимаработы электрической цепи: отключениеи включение источников, приемников,изменения параметров участков цепи.Это контакторы, переключатели, выключатели,разъединители.
Измерительныеустройства– приборыдля измерения различных параметровэлектромагнитных процессов, протекающихв электрической цепи(амперметры, вольтметры, ваттметры ит.д.).
Схемаэлектрической цепи– графическоеизображение электрической цепи,содержащее условные изображения ееэлементов и показывающее соединениеэтих элементов.
ЕСКД «Обозначенияусловные графические в схемах». ГОСТ2.721-74 – 2.758-81.
Приемники, источники:
–элементгальванический;
–лампанакаливания;
–генераторпостоянного тока электромеханическоготипа;
–резистор;
–потенциометр;
–реостат;
–катушкаиндуктивности;
–конденсатор.
Коммутационные устройства:
–нормальноразомкнутый контакт;
–нормальнозамкнутый контакт;
–переключающийконтакт.
Показывающиеприборы (A,V, W):
Преобразовательные устройства:
–воздушныйтрансформатор;
–диодныймост (двухполупериодный выпрямитель);
–инвертор.
Принципиальнаясхема электрической цепи– схемаэлектрической цепи, изображающаясоединение реальных элементов этойцепи.
Пример.Простейшая электрическая цепь –гальванический элемент, соединенный слампой накаливания через выключательс помощью соединительных проводов. Дляизмерения напряжения и тока в цепьвключены вольтметр и амперметр.
Функциональная(структурная, блок-схема) – схемаэлектрической цепи, изображающаясоединение отдельных блоков сложнойэлектрической цепи, выполняющихопределенные функции(усиление, выпрямление, инвертированиет.д.)
Двухполюсник– частьэлектрической цепи, которая рассматриваетсяотносительно двух каких-либо зажимов.
Четырехполюсник– частьэлектрической цепи, имеющая два входныхи два выходных зажима.
Активнаяцепь – частьэлектрической цепи, в которой действуютисточники электрической энергии.
Пассивнаяцепь – частьэлектрической цепи, в которой нетисточника электрической энергии.
-
Схема замещения электрической цепи
Ни функциональная, ни принципиальнаясхемы электрических цепей не отражаютколичественную сторону электромагнитныхпроцессов, которые имеют место в элементахцепи и которые определяют режим работыэтой цепи независимо от конструкции ифизической природы этих элементов.
Схема замещения(расчетнаяматематическая модель, эквивалентная)электрической цепи–схемаэлектрической цепи, изображающаясоединения абстрактных, идеальныхэлементов, с достаточным приближениемотображающих электромагнитные процессыв электрической цепи.
В теории электрических цепей реальныеэлементы, из которых составляетсяэлектрическая цепь, заменяютсяабстрактными идеальными элементами сопределенными свойствами.
Какие же это элементы? И какиеэлектромагнитные процессы они отражают?
Источник: https://studfile.net/preview/6382911/page:3/