Для чего нужен дроссель в лампах ДРЛ?

Содержание

Зачем используют дроссель для люминесцентных ламп?

Для чего нужен дроссель в лампах ДРЛ?

Люминесцентные лампы в качестве источника света достаточно часто можно встретить как в просторных общественных местах, так и в квартирах. Столь большой спрос на них обусловлен, прежде всего, их экономичными свойствами. Если провести их сравнение с лампами накаливания, то, безусловно, они выигрывают практически по всем параметрам (высокий КПД и высокая светоотдача, долговечность).

Но есть одно но, которое в некоторой степени может, является как преимуществом, так и недостатком. Это наличие дросселя и стартера. В данной статье речь пойдет как раз о дросселе.

Попробуем разобраться, для чего нужен дроссель для люминесцентных ламп, какой у него принцип работы, уделим внимание техническим характеристикам, составным компонентам, видам дросселей, а также рассмотрим другие не менее важные вопросы.

Для чего нужен

Для нормальной работоспособности источника света, чего нельзя сказать про обычные разрядные лампы, нужен дроссель, роль которого будет заключаться в выполнении пускорегулирующей функции в люминесцентных лампах.

Такой светильник при помощи одного электроснабжения включить не получится. Для него требуется вспомогательный пускорегулирующий элемент – дроссель.Поэтому в модель включения обязательно в качестве балласта добавляют сопротивление. Роль сопротивления заключается в ограничении тока. При излишнем нагревании светильника, у дросселя срабатывает реактивное сопротивление, которое как раз и ограничивает подачу тока. Сопротивление дросселя, можно сказать, сбавляет обороты лавинообразного нарастания тепла при включении источника света в электросеть.

Дроссель является неотъемлемым элементом люминесцентного устройства, функции которого состоят в следующем:

  • создает безопасное и достаточное поступления тока, для дальнейшего разогрева электродов лампочки при ее включении;
  • за счет импульса высокого напряжения, который образуется в обмотке, появляется разряд в колбе люминесцента;
  • стабилизирует разряд электротока;
  • предоставляет бесперебойное функционирование лампы даже в ситуации периодические случающихся отклонений напряжения в сети.

Одной из важнейших характеристик дросселя является его индуктивность или индуктивное сопротивление, благодаря которому функционируют люминесцентные источники света. При покупке ограничителя необходимо внимательно ознакомиться с его техническими характеристиками, которые полностью должны отвечать характеристикам лампы.

Принцип работы

Основной принцип работы устройства заключается в фазном смещении переменного тока во время перехода через ноль на девяноста градусов. За счет такого смещения происходит удержание нужного тока, чтобы пары металла в светильнике могли гореть.

Обозначение катушки индуктивности в цепи.

Обозначение катушки индуктивности в цепи подключения выглядит как косинус угла фи. Это то самое значение, на которое и отстает сила тока от напряжения. Число, на которое, сила тока остается позади от напряжения часто называют еще значением мощности либо коэффициентом. Для того, что найти активную мощность, надо перемножить значение напряжения, силу переменного тока и коэффициент мощности.

Ели значение мощности небольшое, то это приведет к возрастанию показателей реактивной энергии, что в свою очередь создаст добавочную нагрузку на проводящие кабельные провода и трансформаторы.

Чтобы увеличить значение косинуса фи в схему функционирования люминесцентного устройства вдобавок подключается параллельно самому устройству компенсационный конденсатор. Так, при подключении к схеме функционирования лампы, мощность которой от 18 до 36 Вт, конденсатора емкостью 3-5 мкФ, косинус фи увеличиться до 0,85. Шум дросселя, который функционирует при частоте 50 Гц, может быть различной интенсивности.

Дроссели по интенсивности шума бывают следующих уровней:

  • Н-уровня (средней интенсивности);
  • П-уровня (пониженной интенсивности);
  • С-уровня (очень низкой интенсивности);
  • А-уровня (особо низкой интенсивности).

Чтобы избежать преждевременного выхода светильников из строя, необходимо обратить внимание на то, чтобы их мощность отвечала номинальной мощности катушки индуктивности.

Технические характеристики

Технические особенности дросселей, на которые стоит обязательно обращать внимание при выборе источника света, следующие:

  • Назначение. В люминесцентном устройстве катушка индуктивности создает нужный импульс для того, чтобы пары металла могли в устройстве гореть, также она поддерживает нужное значение мощности во время функционирования устройства.
  • Мощность. Главным техническим параметром ограничителя является значение его мощности. Именно от него зависит работоспособность всех других параметров и лампы в целом. Исходя из показателей мощности, эти параметры у каждого ограничителя светильника будут разные. По уровню мощности ограничители разделяются на три больших категории: B, C, и D. От того, к какой категории они относятся, зависит наименование ограничителей.
  • Коэффициент самоиндукции. За счет индуктивности дросселя мощность электроэнергии, которая приходиться на проводящие контакты лампы.

Коэффициент самоиндукции.

Виды

Разделение ограничителей проходит по такому же принципу, что разделение источников света, к которым в последующем подключается соответствующий ограничитель. Как упоминалось выше, если ограничитель подключить к источнику света, технические параметры которого не подходят под данный ограничитель, в таком случае источник света очень быстро выйдет из строя. Итак, катушки индуктивности по мощности бывают следующие:

  • 9 вольтовый – для сберегающих источников света;
  • 11 вольтовый – для маленьких светильников;
  • 15 вольтовый – подходит для настольных светильников;
  • 18 вольтовый – для установки на столах в офисах;
  • 36 вольтовый – устанавливается в люминесцентные устройства низкой мощности;
  • 58 вольтовый – используется для потолочных светильников;
  • 65 вольтовый – для установки светильников на потолке, состоящих из большого количества ламп;
  • 80 вольтовый – устанавливается в люминесцентные устройства высокой мощности;
  • электронный дроссель может быть предназначен для сразу 2-х ламп либо быть просто рассчитан под мощность 2-х ламп;
  • ограничитель со стартером, предназначен для люминесцентных устройств;
  • преобразователь без катушки индуктивности используется для холодного розжига люминесцентных устройств. За счет трансформатора горение происходит без мерцания, однако в данном случае количество включений светильника должно быть минимальным.

Устройство

Устройство дросселя для люминесцентных ламп включает в себя следующее составляющие: сердечник, сделанный из электротехнического сплава, медный провод и кожух. Выглядит это следующим образом: на сердечник наматывается медный провод, а кожух служит для них окантовкой.

Механизм разбора ограничителя на составные части, сводить к следующим простым действиям:

  • убирается окантовка;
  • раскручивается провод;
  • в результате остается только сердечник, состоящий из пластин.

Производить расчёт катушки индуктивности нужно только тогда, когда идет подключение сразу нескольких источников света либо если дроссель люминесцентной лампы составляется согласно установленным показателям.

Подключение

Ответственность за подключение к электросети люминесцентных ламп с дросселем лучше всего предоставить профессиональному электрику. В самом подключении нет ничего трудного.

Итак, запуск огрничителя, а точнее схема подключения люминесцентной лампы выглядит следующим образом:

  • Поступление напряжения начинается с конденсатора и постепенно переходит ко всем точкам сборки;
  • После переходит на катушку индуктивности;
  • Затем, покидая ее, с определенной последовательностью объединяет
  • все зажимы светильника;
  • И только после объединения всех зажимов переходит ко 2-му контакту сети.

Ограничитель запуститься только в том случае, если его мощность будет полностью отвечать значению мощности источника света. В таком случае свечение будет чистым, без мерцаний.

Как зажечь без дросселя

На практике бывают случаи, когда катушка индуктивности выходит из строя. Возникает вопрос: «Как можно подключить люминесцентную лампу через дроссель?» Однако, здесь есть выход – с помощью постоянного тока повышенного номинала люминесцентная лампа может быть включена и без дросселя либо стартера. У такого способа есть, конечно, свои недостатки, однако, для экстренной ситуации вариант неплохой.Подключение люминесцентной лампы без дросселя  приведено ниже.

Подключение люминесцентной лампы без дросселя.

Чтобы разобраться, как работает подключение светильника без ограничителя необходимо понять механизм розжига самого источника света.Такой тип подключения производиться с заранее замкнутыми попарно контактами светильника с обеих сторон. Целая спираль либо нет, значения не имеет.

На один контакт светильника подается положительный электрический заряд, а на другой контакт – отрицательный заряд. Долговечность от такого способа так называемой «реинкарнации» конечно снижается. Но в основном таким способом подключают уже сгоревшие источники света.

Особо сильным разнообразием данный тип подключение газоразрядных ламп без катушки индуктивности похвастаться не может. Разве что, для такого способа подключения необходима будет большое поступление повышенного напряжения во время запуска источника света.

То насколько напряжение будет повышенным, зависит от технических параметров самой лампы и электросети, в которую она будет подключать

Как проверить исправность

Принцип проверки ограничителя достаточно прост. Все, что нужно сделать, это достать его из люминесцентной лампы и проверить сопротивление дросселя при помощи тестера либо мультиметра.У ограничителя, находящегося в исправном состоянии, сопротивление на тестере покажет определенное постоянное значение. Если ограничитель все же неисправен, то тестер покажет значение, которое будет значительно отличаться от нормальных показателей, выходить за норму.Таким образом, сбой в работе дросселя может быть обусловлен обрывом либо перегоранием окантовки, а также может произойти ввиду того, что нарушена изоляция между витками провода.

Причиной сбоя может служить обрыв либо перегорание окантовки, если значение напряжения на тестере будет бесконечно высоким. О перегорании также свидетельствует неприятный запах, который особенно ощутим во время включенной лампы.Если же значение напряжение на тестере слишком низкое, то в данном случае подозрение о нарушении изоляции провода полностью находит свое подтверждение.

Как заменить

Заменить дроссель в люминесцентной лампе, благодаря его компактности, очень легко. Прежде чем приступать к демонтажу дросселя, нужно отключить электричество в помещении, поскольку простого выключения лампы будет не достаточно, для того, чтобы напряжение в лампе спало. Достаточно просто снять крепеж и отсоединить провода, поставить новый дроссель и вновь подсоединить провода в том же порядке, в каком они были соединены изначально.

Источник: https://lightgid.ru/osvetitelnye-ustanovki/zachem-ispolzuyut-drossel-dlya-lyuminestsentnyh-lamp

Светильник ДРЛ: для чего нужен дроссель, лампа уличного освещения

Для чего нужен дроссель в лампах ДРЛ?

Для освещения улиц, промышленных и архитектурных объектов, сельскохозяйственных комплексов, не требующих высокого качества цветопередачи, применяется светильник ДРЛ (дуговая ртутная лампа высокого давления). Особенность прибора заключается в высоком КПД, экономичности, длительной эксплуатации.

Существует множество разновидностей осветительного устройства: дневного, ультрафиолетового света, вольфрамные, натриевые варианты. Все газоразрядные изделия объединяет непостоянство сопротивления (соответственно тока). Ограничить рабочий ток источников света помогает электронный (ЭПРА) или электромагнитный (ЭмПРА) пускорегулирующий аппарат, выполненный в виде катушки индуктивности — дросселя.

Рабочая схема подключения светильника ДРЛ

Преимущества и недостатки

Главным достоинством люминесцентной лампы выступает высокая светоотдача, относительно типовых светильников. Если ртутная ДРЛ 250 обеспечивает световой поток 12000 лм при расходе энергии 250 Вт, обычное устройство будет потреблять 1000 Вт. Размеры мощных лампочек (более 400 Вт) отличаются от стандартных устройств компактностью. Спектр излучения прибора естественный, свет интенсивный, далеко излучается.

Ртутный светильник 250 Вт

Отрицательными характеристиками приборов высокого давления выступают:

  1. Выделение озона в ходе эксплуатации, важно позаботиться о вентиляции помещения.
  2. Стоимость люминесцентных светильников в 5–7 раз дороже обычных ламп высокой мощности.
  3. Размеры отдельных модификаций (например, ДРЛ 125 Е40) превышают аналогичные устройства с вольфрамовой нитью.
  4. Спустя 2-3 месяца эксплуатации неизбежно изменение спектра излучения. Недостаток вызван техническими характеристиками люминофора.
  5. Светильник ДРЛ чувствителен к перепадам напряжения и требует подключения через пускорегулирующий аппарат.
  6. Неприятное гудение и моргание световых лучей определяет ощутимые неудобства в жилых помещениях. Применять приборы высокого давления в цехах с вращающимися предметами нежелательно в силу стробоскопического эффекта (подвижные устройства кажутся неподвижными).
  7. Нормальная рабочая высота для светильника ДЛР — четыре метра.

Сравнение ДРЛ светильников в процессе работы

Важно помнить! Ртутный состав горелки требует отдельной утилизации прибора.

Характеристики

Рабочие параметры светильников ДРЛ:

  • Мощность лампочек 80-1000 Вт. Определяется количеством электродов: два электрода — 250…1000 Вт, четыре электрода — 80…1000 Вт. Особой популярностью пользуются приборы мощностью 250 Вт.
  • Цоколь. Зависит от мощности: приборы до 250 Вт оснащают цоколем е27, свыше 250 Вт подойдет вариант е40.
  • Тактовая нагрузка сети достигает 8 ампер. Показатель взаимосвязан с мощностью осветительного прибора.
  • Световой поток ртутных устройств составляет минимум 3 2 00 люмен. Значение характерно для источника света на 80 Вт. Дроссельные лампы уличного освещения с максимальной мощностью 1 кВт излучает световой поток близко 52 000 люмен.
Читайте также  Принцип работы дросселя лампы ДРЛ

Параметры ртутной лампы мощностью 150 Вт

Сфера использования

Люминесцентные лампы эффективно используются на автодорогах, улицах и в скверах, производственных цехах и объектах технического назначения (АЗС, стоянках, складах). Часто встречаются в качестве декоративных источников освещения архитектурных сооружений и административных зданий. Разнообразие конструктивных особенностей продукции ДРЛ позволяет подобрать оптимальный вариант для привлечения косяков рыб и планктона в процессе промысла, обеспечить холодным светом медицинское оборудование для обеззараживания помещений.

Разновидности светильников

Светильники типа ДРЛ характеризуются широким разнообразием. Отличия составляет область применения (внутренние, наружные), типы конструкций и мощность устройств.

Типоразмеры ртутных ламп внутреннего назначения

Внутренние

Светильники с люминесцентными лампами рекомендованы для освещения производственных объектов с повышенным уровнем пыли и влаги, а также прачечных, автомоек, закрытых складов, гаражей. Приборы работают от сети переменного тока с частотой 50 Гц и номинальным напряжением 220 В. Температура окружающей среды при эксплуатации —20°С до +50°С.

Уличные

Наружные лампы используются для прямого, рассеянного, местного освещения, удачно сочетаются с симметричными или асимметричными отражателями. Светильник уличный типа ДРЛ заключен во влагозащищенный прочный корпус, способен противостоять сильному ветру, заморозкам и ливням.

Классификация светильников по типу ламп:

  • ДРЛ. Изделия характеризуются небольшим индексом цветопередачи, выделением тепла, 5-х минутным выходом на требуемый уровень светового потока. При выборе ртутной продукции также стоит учитывать необходимость стабильного источника энергии и термостойких проводников.

Источник освещения для растений

  • ДРЛФ. Лампы с фокусированным светом отличаются способностью стимулировать фотосинтез у растений.
  • ДРВЭД. Серия дуговых ртутных эритемных вольфрамовых лампочек не требует подключения ПРА. Активация происходит под действием балласта, аналогично обычным лампам накаливания. В основе конструкции лежат йодиды металлов, позволяющие обеспечить желаемый уровень цветности. Лампы испускают УФ (эритемное) излучение, эффективно работают при переменном токе. Работают без ПРА, достигая максимального индекса светоотдачи и длительного периода эксплуатации. Мощность ламп составляет диапазон 125-1000 Вт.

Образец дугового натриевого светильника

  • ДНаТ. Принцип действия дуговой натриевой трубчатой лампы аналогичен лампам ДРЛ. Однако светильникам ДНаТ свойственно специфическое свечение и свет оранжево-желтого или золотисто-белого оттенка. Приборы потребляют 70-400 Вт мощности и считаются наиболее экономичными источниками света.

Конструкция

Лампа дуговая представлена стеклянным баллоном 1 с резьбовым цоколем 2. По центру колбы размещена ртутно-кварцевая горелка (трубка) 3, наполненная аргоном и одной каплей ртути. Четырех электродные лампы располагают главными катодами 4 и дополнительными электродами 5. Электроды подключены к катоду противоположной полярности посредством добавочного угольного резистора 6.

Конструктивные особенности ртутного светильника

Подробное описание элементов позволяет выделить следующие особенности дроссельной лампы:

  • Цоколь — простейшее устройство, принимающее энергию от электросети за счет контакта токоведущей части лампы ДРЛ (резьбовой и точечной) с контактами патрона. Полученная энергия поступает на электроды горелки.
  • Горелка служит главным функциональным элементом ДРЛ лампы. Внешне деталь представлена кварцевой колбой, оснащенной с обеих сторон по два электрода (основные и дополнительные). Внутреннее пространство горелки заполнено газом аргоном для изоляции теплообмена между горелкой и средой, а также одной каплей ртути.
  • Внешняя колба содержит кварцевую горелку светильника, подключенную к проводникам от контактного цоколя. Также стеклянная емкость содержит азот и два ограничителя сопротивления (подсоединены к дополнительным электродам), покрыта изнутри люминофором.

Дуговой источник освещения в разрезе

Первые лампы ДРЛ оснащали двумя электродами. Для поджога светильника приходилось дополнительно включать в схему пусковой элемент (высоковольтный импульсный пробой промежутка горелки). Более затратный вариант ДРЛ был снят с производства, заменен 4-х электродным вариантом. Для бесперебойной работы достаточно дросселя.

Для чего необходим дроссель в светильнике

Дроссель стабилизирует работу ДРЛ. Запуск светильника напрямую, без дополнительного устройства не рекомендуется — лампа сгорит. Причиной выступает пусковой ток, превышающий номинальный в 2,5 раза. Розжиг лампы сопровождается электрическим пробоем в атмосфере инертных газов, заполненных парами ртути или натрия, затем следует тлеющий или дуговой разряд. Сопротивление газа снижается в десятки раз, ток увеличивается. Отсутствие ограничений для тока грозит чрезмерным выделением тепла, в доли секунд газы внутри лампы сгорят, светильник выйдет из строя. Во избежание поломок, последовательно в систему добавляют сопротивление.

Подключение дросселя в лампе дневного света

Применять активное сопротивление нецелесообразно, ввиду повышенных потерь энергии на теплоотдачу. Более эффективным решением станет добавление электронной схемы или дроссели. Активного сопротивления ограничитель не имеет, мощности не расходует, энергию накапливает и отдает в цепь.

Как правильно подключить

С дросселем. Схема предусматривает последовательное соединение дросселя с лампой ДРЛ, подключенных к переменной сети ~ 220 вольт. Полярность подключения не имеет значения.

Без дросселя. Эксплуатация дуговой лампы без дополнительных приспособлений возможна при соблюдении ряда условий:

  1. Использования источника света типа ДРВ. Лампы, способные работать без дросселя, оснащены дополнительной вольфрамовой спиралью, выполняющей роль пускателя. Характеристики спирали соответствуют параметрам горелки.
  2. Запуска светильника ДРЛ посредством импульса напряжения, исходящего от конденсатора.
  3. Розжига лампы ДРЛ при последовательном подключении лампы накаливания.

Схема экономичного подключения лампы для освещения подсобных помещений

Важно! При включении ДРЛ разгорается не сразу — процесс занимает близко 5 минут, при повторном запуске работающего светильника — лампа должна остыть (5 — 15 мин).

Знание параметров и принципа работы ртутных ламп позволяет правильно подобрать светильник и подключить.

Источник: https://rusenergetics.ru/lampochki/svetilnik-drl

Зачем нужен и как подключить дроссель к лампе ДНаТ

Для чего нужен дроссель в лампах ДРЛ?

Газоразрядные лампы, в том числе ДНаТ не получиться просто подключить к сети, так как напряжения для их запуска недостаточно. Чтобы осветительные устройства работали, нужно приобрести пускорегулирующее устройства (ПРА, дроссель, балласт). Кроме того, для нормального функционирования устройства понадобится ИЗУ (импульсное зажигающее устройство) и конденсатор.

Дроссель для ДНаТ сдерживает и стабилизирует напряжение при запуске лампы, оказывает сопротивление его изменениям (резкие скачки тока, появление электрических сигналов другой частоты). Таким образом, ПРА обеспечивает нормальную работу натриевых осветительных элементов, продлевает срок их эксплуатации. Но, чтобы балласт выполнял все свои функции, нужно знать, как он устроен, и как его правильно применять.

Зачем нужен дроссель: изменчивое сопротивление ламп

Лампа ДНаТ имеет стеклянный корпус, внутри которого находится горелка, наполненная смесью газов (соединения натрия, пары ртути, ксенон). По обоим краям трубки размещены электроды, которые образуют дугу. После запуска источника света с помощью ИЗУ создаются импульсы с высоким напряжением, после чего гарантированной возникает дуговой разряд. Из-за резкого увеличения тока и чрезмерного тепловыделения пары внутри лампы перегреваются. Это грозит тем, что прибор придет в негодность или даже взорвется. Чтобы избежать этого, нужно использовать дроссель для ДНаТ.

Для ограничения величины рабочего тока в ДНаТ применяют балласты разного вида: электромагнитные (ЭмПРА) и электронные (ЭПРА). Вторые считаются более продуктивными, однако их стоимость слишком высокая. По этой причине чаще применяют электромагнитный дроссель. На вид это компактный блок, который регулирует мощность осветительного прибора.

ПРА помогают уменьшить пульсацию напряжения, сглаживают частоту тока, ограничивают и стабилизируют его подачу. То есть, прибор регулирует изменение тока в цепи: поддерживает его при убывании и сдерживает при резком увеличении. Благодаря этим функциям, дроссель для ламп ДНаТ повышает их светоотдачу, продлевает срок эксплуатации.

Параметры и характеристики катушки индуктивности

При выборе пускорегулирующего устройства нужно учитывать его характеристики. Один из главных параметров – это индуктивность, которая измеряется в Гн (Генри). Величина реактивного сопротивления включенного балласта зависит от его индуктивности. Эта величина характеризует магнитные свойства электрической цепи. 1Гн пропускает 1А тока при напряжении 1В.

К основным параметрам индуктивной катушки относят:

  • длина катушки в м;
  • число витков;
  • проницаемость материала сердечника;
  • размер поперечного сечения магнитопровода;
  • магнитное насыщение.

Индуктивность обмотки балласта зависит от всех вышеописанных характеристик.

Сопротивление витков обмотки катушки зависит от величины поперечного сечения сердечника. Поэтому при выборе ПРА для ДНаТ нужно учитывать их мощность, от которой зависит номинальный ток нагрузки. Соответственно, размеры электрического балласта зависят от мощности лампы.

Внешний вид

Принцип работы балласта построен на способности катушки к самоиндукции. По сути, ПРА – это и есть катушка индуктивности, внутри которой находится сердечник с металлической оправой. Эта оправа состоит из стальных и ферромагнитных пластинок, которые изолированы друг от друга. Это необходимо для того, чтобы не образовались вихревые токи, из-за которых возникают помехи. Сверху прибор покрыт кожухом.

В последнее время очень популярны электронные балласты. Они выглядят, как компактные блоки с выведенными клеммами. Основа прибора – это печатная плата, которая размещена в пластиковом коробе.

Все дроссели имеют внешнее сходство с трансформаторами. Количество выводов у них может быть разное, поэтому идентифицировать их только по внешнему виду сложно. Для этого нужно обращать внимание на изображение на корпусе прибора.

Если трансформатор имеет одну обмотку, то это балласт. Но, чтобы убедится в этом, нужно провести прозвонку с помощью мультиметра. Если во время проверки показания сопротивления отличаются, то вы нашли выводы одной обмотки.

Нередко одинаковые обмотки являются компонентами входной и выходной цепи питания осветительного устройства, выполняя функции балласта. Тогда они прозваниваются с одинаковыми показаниями сопротивления.

Важно! Проверить наличие замыкания между витками обмотки в ПРА можно с помощью мультиметра. Если после прозвонки индуктивность меньше, чем в технической документации, то это свидетельствует о том, что изоляция обмоток разрушена. Использовать такой дроссель для ДНаТ запрещено, так как он приведет в негодность любую лампу.

Устройство и сборка пускорегулирующего (ПРА) аппарата для ДНаТ

Дроссели для ДНаТ делятся на низкочастотные и высокочастотные. В первом случае катушка индуктивности задерживает ток низкой частоты, а во втором – высокой.

Балласт для тока низкой частоты состоит из катушки, внутри которой стальной сердечник, а его пластины изолированы друг от друга. Индуктивность такого прибора составляет от 1Гн. Это свойство позволяет ему ограничивать напряжение, если оно снижается или увеличивается.

Высокочастотные дроссели для ДНаТ не имеют сердечника. В таких приборах медная проволока навивается на каркас из пластика или резистор. Выглядит такой балласт, как секционная (многослойная) намотка.

Материал для сердечника влияет на размер дросселя для ДНаТ. Магнитный стержень, как правило, находится внутри компактных устройств. Однако размер не влияет на их индуктивность.

Высокочастотные приборы оснащены ферритовыми или стальными сердечниками. Такие ПРА используются в широком диапазоне частот.

В зависимости от места установки разделяют встраиваемые и закрытые дроссели для ДНаТ. Первые вставляют в корпус осветительных приборов, которые защищают их от влаги, а вторые монтируются в герметичный блок.

Для чего нужны ИЗУ (импульсные зажигающие устройства)

Без импульсного зажигающего устройства подключить натриевую лампу не получиться. Эта деталь не нужна только в том случае, если ИЗУ уже встроено в осветительное устройство.

Зажигающий прибор необходим для запуска газоразрядного источника света. Он генерирует импульсы высокого напряжения на электроды, что обеспечивает образование дуги. То есть, ИЗУ помогает ДНаТ запуститься, после чего его влияние на работу лампы заканчивается.

Диапазон мощностей зажигающего устройства – от 35 до 400Вт. Кроме того, ИЗУ бывает двух- или трех контактное. Схема подключения устройств разного типа немного отличается.

Кроме балласта, а также ИЗУ специалисты рекомендуют дополнять комплект для ДНаТ конденсатором. Его преимущество в том, что этот прибор помогает снизить нагрузку на проводку.

Схемы подключения дросселя и газоразрядных ламп

Если вы не знаете, как подключить лампу ДНаТ, но хотите это сделать самостоятельно, то изучите информацию ниже. В первую очередь вам нужно подготовить дроссель, ИЗУ, желательно конденсатор и само осветительное устройство. Затем попытайтесь найти схему подключения, которая обычно изображена на корпусе балласта или зажигающего прибора.

Чтобы запустить ДНаТ, подведите к балласту фазу, потом пустите ее на зажигающее устройство, а потом подключите источник света. После этого можно проверить работоспособность лампы.

Как упоминалось ранее, схема подключения ДНаТ с применением ИЗУ с двумя и тремя выводами отличается. Первые лучше использовать для маломощных лампочек, для запуска которых достаточно импульса до 2 киловольт.

С трехконтактным ИЗУ

Комплект для ДНаТ можно собрать в компактном щитке или встроить в корпус осветительного прибора, если его габариты позволяют.

Схема подключения с сайта lampa.dn.ua

Подключение газоразрядных светильников проводиться по такому плану:

Внимание. В первую очередь проверьте изоляцию дросселя и конденсатора с помощью тестера. Для этого переключите прибор в режим максимального сопротивления. Это поможет узнать, не проходит ли напряжение на корпус.

  • Найдите 2 провода с отрицательным зарядом, которые выходят из автомата. Одну жилу проведите к лампе, а вторую – к соответствующему выходу на дросселе, который имеет маркировку «N». Устанавливайте балласт только в разрыв фазного кабеля (не нулевого), который идет к лампе.
  • Потом расключите фазу. Одну жилу, идущую с автомата, вставьте в контакт дросселя, а потом подключите его к клемме ИЗУ с маркировкой «В».
  • Вставьте провод в вывод зажигающего устройства, обозначенный «Lp» и проведите его к патрону лампы.

После этого можно проверить работоспособность ДНаТ.

С двухконтактным ИЗУ

Зажигающие устройства с двумя выводами подключаются параллельно источнику света. То есть, после дросселя нужно завести фазный провод в однотипный выход ИЗУ, а к другой клемме подключают жилу с отрицательным зарядом. При этом не важно откуда она выходит, ее можно провести даже от патрона.

Читайте также  Энергосберегающие лампы ртутные или нет

Схема подключения с сайта lampa.dn.ua

Конденсаторное устройство подключите параллельно все цепи. Для этого просто один кабель соедините с фазой автомата, а второй с нулем. Потом протяните провод и разведите его концы на патрон.

5 ошибок при подключении лампы ДНаТ

Часто новички при подключении натриевой лампы допускают ошибки, которые приводят к тому, что срок эксплуатации осветительного прибора уменьшается:

  1. Неправильно подключают дроссель с 4 выводами. Начинающие мастера заводят фазный и нулевой провод на одни клеммы, а к другим подсоединяют лампу. Но это неправильно. Чтобы не допустить ошибку, нужно изучить схему, которая изображена на корпусе балласта, и строго соблюдать ее.

Важно! В продаже имеются дроссели на 4, 5, 6 выходов. Схема подключения разных видов устройств отличается.

  1. Устанавливают лампу голыми руками. После прикосновения к стеклу на корпусе остается жир, который после нагревания ДНаТ темнеет, образуя пятна. Целостность лампы на этих участках может нарушиться. Чтобы этого не случилось, перед запуском всегда протирайте стекло.
  2. Используют для подключения ДНаТ дроссели с большей мощностью. Например, нельзя в комплект для подключения источника света на 250Вт включать балласт на 400Вт. Это приведет к тому, что светильник начнет моргать, и со временем лампа придет в негодность. Подбирайте дроссель с мощностью такой же, как у источника света.
  3. Подключают дроссель от другого вида натриевых ламп, например, ДРЛ, к ДНаТ. Если балласт подобран неправильно, то осветительный прибор быстрее выйдет из строя.
  4. Не включают в комплект для подключения ДНаТ конденсатор. Тогда провода постоянно перегреваются.

Запомните эти ошибки, чтобы не допускать их во время работы.

Основные выводы

Как видите, дроссель для ДНаТ – это необходимое устройство, которое обеспечивает бесперебойную работу осветительной аппаратуры.

Оно уменьшает пульсацию напряжения, сглаживает частоту тока, ограничивает и стабилизирует его подачу.

Но, чтобы осветительный прибор работал корректно, подбирайте дроссель с такой же мощностью, как у лампы.

Для подключения ДНаТ кроме балласта понадобиться ИЗУ и конденсатор.

Чтобы правильно подключить светильник, изучите схему на корпусе балласта, и строго соблюдайте ее.

Не допускайте распространенные ошибки при подключении осветительного устройства, чтобы оно прослужило вам, как можно дольше.

ПредыдущаяСледующая

Источник: https://svetilnik.info/lampy-i-svetilniki/drossel-dlya-dnat.html

Принцип работы дросселя лампы ДРЛ — Спецтехника

Для чего нужен дроссель в лампах ДРЛ?

Лампа ДРЛ — недорогой источник света, принцип действия которого основан на преобразовании капель ртути в пары.

В основном используется в осветительных системах для улиц, промышленных объектов и иных комплексов, где не требуется высокое качество цветопередачи.

Существует несколько основных типов ДРЛ-лампы:

  1. Стандартная дуговая ртутная люминесцентная — характеризуется слабой цветопередачей, а во время свечения выделяется большое количество тепла. Для выхода на рабочий режим требуется около пяти минут с момента включения в сеть. Крайне неустойчивы к перепадам напряжения, поэтому эксплуатация допустима в цепях с постоянным источником питания. В конструкциях, в которых используются данные лампы, обязательно должны быть термостойкие провода.
  2. Дуговая ртутная эритемная вольфрамовая (ДРВЭД) — лампа, функционирующая без дросселя. Подключается через активный балласт так же, как и стандартные лампочки накаливания. За счет наличия йодидов металлов повышается светопередача и уменьшается потребление электроэнергии. Для большей яркости используется увиолевое стекло. Лучше всего подходят для комнат с недостатком естественного освещения.
  3. ДРЛФ — усовершенствованная ДРЛ, используемая для ускорения фотосинтеза растений. Изнутри колба покрывается отражающим материалом, благодаря чему лампочка и получила свое второе название — рефлекторная. Идеально подходит для подключения к сети переменного тока. Применяется в парниках и теплицах, где требуется дополнительный источник света.
  4. Дуговая ртутная вольфрамовая — повышенная световая отдача, большая продолжительность эксплуатации без пускорегулирующего аппарата. Отличный вариант для освещения улиц, паркингов, открытых площадок и т. п.

Технико-эксплуатационные характеристики

В процессе нагрева стеклянной колбы разбросанная по ее поверхности ртуть (в форме капель) начинает испаряться.

Чем сильнее процесс испарения, тем прочнее разряд между электродами и катодами.

Номинальный режим лампы ДРЛ — момент, когда все капли ртути преобразуются в пар.

Важно! После отключения питания от лампы ее можно будет повторно включить только после полного остывания.

Изделие характеризуется повышенной чувствительностью к скачкам температуры, поэтому его функциональность без колбы невозможна (исходя из физических законов).

Колба отвечает за две важные функции:

  1. Барьер между газоразрядной камерой с парами ртути и окружающей средой.
  2. Ускорение процесса преобразования ультрафиолетовых лучей в спектр красного свечения, что возможно благодаря наличию на стенках люминофора. К красному свечению добавляется зеленое, формируемое внутренним разрядом, что приводит к возникновению белого света.

Скачки напряжения сильно влияют на работу лампы ДРЛ.

Отклонение от номинального значения на 10–15 % считается допустимым, но если эта величина будет равна 25–30 %, то свечение станет неравномерным.

При еще большем уменьшении лампа либо не загорится, либо погаснет (если до этого была в работе).

Расшифровка маркировки изделий очень проста — число указывает на модель лампы, которая совпадает с номинальной мощностью.

В таблице ниже представлены параметры конкретных моделей ДРЛ:

МодельНоминальное напряжение, ВМощность, ВтДлина, ммДиаметр, ммЦокольСветовой поток, лмДолговечность, ч
ДРЛ-125 125 125 177 77 E27 6000 12 000
ДРЛ-250 130 250 227 90 E40 13 500 15 000
ДРЛ-400 135 400 290 121 E40 25 000 18 000
ДРЛ-700 140 700 356 151 E40 40 000 20 000
ДРЛ-1000 145 1000 412 168 E40 60 000 18 000

Схемы подключения

Лампа, состоящая из четырех электродов, подключается последовательно с дросселем. После соединения дросселя и ДРЛ к ним подается напряжение сети.

При использовании дросселя не имеет значения полярность, поскольку его основное предназначение — стабилизация работы осветительного прибора. Дроссель должен соответствовать заданной мощности лампы.

При добавлении в схему конденсатора достигается экономия электричества и становится возможной регулировка реактивной мощности.

Схема подключения через дроссель

Функция дросселя — уменьшение значения тока, необходимого для работы источника света. При отсутствии дросселя лампа перегорает из-за большого напряжения. Элементы соединяются последовательно.

Схема подключения без дросселя

Существует отдельная технология, применяемая для подключения ДРЛ без дросселя.

Идеальным вариантом станет приобретение заводской ДРЛ, для которой не нужен дроссель.

Изделие дополнено спиралью, работающей как обычный стабилизатор и разбавляющей световой поток.

Также к схеме может быть подключена обычная лампочка накаливания, мощность которой сопоставима с ДРЛ. Она выполняет функцию резистора, на выходе понижающего напряжение.

К схеме можно добавить один, два и более конденсаторов. Это актуально при соблюдении важного условия: следует с высокой точностью подсчитать ток, который они выдадут на выходе.

Проверяем работоспособность

Для проверки работоспособности ДРЛ используются тестеры (омметры), что необходимо в том случае, если лампа отказывается работать или функционирует неверно. Подключите устройство к каждому витку на обмотке, проверяя их на разрыв и ток короткого замыкания:

  1. При обнаружении разрыва прибор покажет огромное сопротивление, поэтому придется заменить обмотку.
  2. При отсутствии разрыва и регистрации потери изоляции (благодаря чему появляется короткое замыкание) разница в сопротивлении будет менее значительной.
  3. При наличии короткого замыкания на обмотке дросселя повышение сопротивления может не наблюдаться и технические характеристики останутся прежними. С другой стороны, данный факт никак не влияет на работоспособность самой лампы.

Если омметр так и не показал каких-либо отклонений, то искать проблему следует в осветительном приборе или электросети. Возможно необходим ремонт светильника.

Область применения

За счет дешевизны, долговечности, устойчивости к перепадам напряжения и средних (но иногда минимальных) показателей светоотдачи лампа ДРЛ используется для освещения:

  • улиц;
  • открытых территорий;
  • промышленных объектов;
  • складских помещений.

Источник: https://spectehnica-mo.com/printsip-raboty-drosselya-lampy-drl/

Для чего нужен дроссель для ламп дневного света, ДРЛ, ДНаТ ?

Для чего нужен дроссель в лампах ДРЛ?

Газоразрядные источники света уверенно завоевали свою потребительскую нишу благодаря мощному свечению, экономности, долгому сроку службы и простоте использования.

Существует много разновидностей данного типа электроосветительных приборов:

  • Люминесцентные лампы дневного и ультрафиолетового света;
  • Дуговая ртутная люминесцентная лампа (ДРЛ), и её разновидности (ДРИ, ДРИЗ, ДРШ, ДРТ);
  • Дуговая натриевая трубчатая лампа ДНаТ, и ее модификации: ДНаС, ДНаЗ, ДНаМТ.

Данные осветительные электроприборы отличаются по принципу действия, использованию материалов и химических элементов, внутреннему давлению, светимости, спектру, яркости и мощности. Общим признаком газоразрядных ламп является непостоянство сопротивления (соответственно тока) при запуске и работе.

дросселя для ламп

Поэтому, для ограничения рабочего тока данных источников света применяют балласт (пускорегулирующий аппарат, ПРА), который может быть электронным (ЭПРА), или электромагнитным (ЭмПРА), выполненным в виде дросселя (катушки индуктивности).

Изменчивое сопротивление газоразрядных ламп

Вначале нужно более подробно рассмотреть, зачем для газоразрядных ламп дневного света нужен дроссель. Независимо от типа подобных осветительных электроприборов, в момент запуска они обладают очень большим сопротивлением.

схема подключения лампы дневного света

При розжиге лампы происходит электрический пробой в атмосфере инертных газов, насыщенных парами ртути или натрия, и других добавочных элементов, после чего возникает тлеющий или дуговой разряд.

Сопротивление ионизированного вследствие разряда газа уменьшается в десятки раз, соответственно возрастает протекающий в нём ток. Если данный ток не ограничить, то чрезмерное тепловыделение в доли секунд перегреет находящиеся внутри газы, и выведет электроосветительный прибор из строя, или даже приведёт к взрыву лампу дневного света (ДРЛ, ДНаТ). Чтобы этого не случалось, последовательно в цепь подключения добавляют сопротивление.

Применение активного сопротивления крайне нецелесообразно, ввиду больших потерь электроэнергии на тепловыделение. Поэтому используют электронную схему или дроссель. В идеале, дроссель не имеет активного сопротивления, поэтому он мощности не потребляет, накапливая и отдавая энергию в цепь.

Физические характеристики катушки индуктивности

При неизменной частоте сети, питающей лампы дневного света, реактивное сопротивление подключённого последовательно дросселя зависит от его индуктивности, которое измеряется в международных физических единицах Генри (Гн). Через индуктивность 1 Гн, при напряжении в 1 В, в первую секунду протекает ток 1А.

Дроссель и ИЗУ

Индуктивность обмотки дросселя зависит от квадрата числа количества витков, конструкции и поперечного сечения сердечника магнитопровода, а также от его качества и электромагнитного насыщения.

Поскольку витки обмотки обладают также активным сопротивлением, которое зависит от поперечного сечения обмоточного провода, то при расчёте дросселей для ДРЛ, ДНаТ, или люминесцентных ламп дневного света учитывается их мощность, от которой зависит рабочий ток. Соответственно, габариты дросселя напрямую зависят от мощности подключаемой газоразрядной лампы.

Схемы подключения дросселя и газоразрядных источников света

Наиболее простой является схема подключения дросселя для ДРЛ лампы, в которой для запуска конструктивно предусмотрены дополнительные электроды, с помощью которых создается предварительная ионизация газа, необходимая для возникновения тлеющего разряда, переходящего в электрическую дугу.

В данном случае индуктивное сопротивление служит для ограничения рабочего тока ДРЛ лампы.

Дроссель для люминесцентных ламп также подключается последовательно с катодами, но в данной схеме используется также такое свойство катушек индуктивности, как самоиндукция – возникновение большого импульса напряжения при разрыве цепи на контактах стартера, который используется для нагрева нитей накала.

Лампа ДНаТ, в отличие от других источников дневного света, имеющих люминесцентное покрытие внутри колбы, благодаря парам натрия, испускает излучение в видимом спектре, из-за чего повышается КПД электроосветительного прибора.

Конструктивно светящаяся керамическая трубка данной лампы отличается от аналогичной в ДРЛ, что требует дополнительного импульса для розжига дуги.

ИЗУ

Поэтому дроссель для ДНаТ подключается вместе с импульсным зажигающим устройством (ИЗУ).

схема подключения ДНаТ

Компенсирующий конденсатор

Во всех схемах присутствует подключённый параллельно конденсатор, который служит для компенсации реактивных потерь на дросселе, уменьшая общее энергопотребление. В таблице указаны рекомендуемые номиналы компенсирующих конденсаторов относительно мощности некоторых видов ламп.

Конденсаторы не должны быть электролитическими, рассчитанными на напряжение не менее 400В. Нужно помнить, что увеличение выше емкости выше указанных параметров не приведёт к уменьшению потерь энергии, но может вызвать резонанс в образующемся автоколебательном контуре, что приведёт к импульсам напряжения и миганию лампы.

Уменьшение емкости не даст ожидаемой компенсации реактивных потерь и экономии электроэнергии.

Внешний вид ЭмПРА

Конструктивно дроссели очень похожи на трансформаторы, к тому же, они могут иметь выводов больше двух, что делает затруднительной визуальную идентификацию устройства без наличия обозначения на его корпусе.

Фактически, трансформатор, с используемой одной обмоткой является дросселем. Чтобы проверить тип устройства, нужно воспользоваться мультиметром – если выводы являются ответвлениями одной обмотки, то все они должны прозваниваться с разными показаниями сопротивления.

Часто равнозначные обмотки трансформатора включаются последовательно во входную и выходную цепь питания лампы дневного света или ДРЛ, ДНаТ, выполняя функции дросселя.

При прозвонке такого дросселя сопротивление обмоток должно быть одинаково. Проверить ЭмПРА на наличие межвиткового замыкания можно только с помощью мультиметра, имеющего возможность измерения индуктивности.

Читайте также  Ксеноновые лампы с повышенной светоотдачей

В разобранном виде ЭмПРА

Если измеренная индуктивность меньше чем паспортное значение, то внутри обмотки имеется межвитковое замыкание. Использовать такой ЭмПРА нельзя, так как уменьшенная индуктивность обладает меньшим реактивным сопротивлением, что неминуемо приведёт к выходу из строя любую из подключённых ламп дневного света, будь-то люминесцентная, ДРЛ, ДНаТ и т.д.

Источник: https://infoelectrik.ru/sistema-osveshheniya/drossel-dlya-lamp.html

Для чего люминесцентной лампе дроссель

Для чего нужен дроссель в лампах ДРЛ?

Светодиодные лампы успешно вытесняют другие типы источников света, но люминесцентные приборы используются все еще достаточно широко. Поэтому будет совсем нелишним узнать, что такое дроссель и для чего он нужен люминесцентной лампе (ЛЛ).

Что такое люминесцентная лампа и как она работает

Для того, чтобы понять, для чего лампе дроссель, необходимо познакомиться с принципом ее работы. Конструктивно люминесцентная лампа представляет собой герметично запаянную трубку, внутренние стенки которой покрыты люминофором – составом, светящимся под воздействием ультрафиолетовых лучей.

Сама трубка заполнена смесью инертных газов с небольшой добавкой ртути, а в концы ее впаяны электроды, представляющие собой спирали из тугоплавкого материала (обычно сплавы вольфрама).

Рисунок, поясняющий конструкцию и принцип работы люминесцентной лампы

При подаче на электроды напряжения, через трубку начинает течь ток. Электроны воздействуют на атомы ртути, заставляя последние излучать в ультрафиолетовом спектре. Ультрафиолет в свою очередь воздействует люминофор, который тоже начинает излучать, но уже в видимом, привычным для наших глаз спектре. Сам же ультрафиолет поглощается частично люминофором, частично стеклом колбы. В результате мы получаем источник белого спектра, свободный от ультрафиолета.

Знакомая всем компактная люминесцентная лампа – это все та же обычная трубчатая, просто трубка у нее свернута в спираль. Поскольку разряд в лампе тлеющий, все отлично работает и, в отличие от дуговых ламп, не вызывает локального перегрева стекла в местах изгиба.Все эти КЛЛ – обычные люминесцентные лампы, только с изогнутой колбой

Для чего люминесцентной лампе пускорегулирующая аппаратура?

В теории все просто, но на практике много сложнее. Во-первых, через лампу необходимо ограничить ток. В противном случае тлеющий разряд перейдет в неуправляемый дуговой, поскольку сразу после появления тока сопротивление газового промежутка сильно падает из-за появившихся паров ртути. Произойдет короткое замыкание, и трубка выйдет из строя, а то и взорвется.

Во-вторых, при подаче рабочего напряжения на электроды, ток через лампу не потечет – в холодном приборе очень мало паров ртути – вся она конденсируется и оседает на стенках колбы в виде обычной металлической ртути. А инертный газ, как известно, имеет слишком большое сопротивление для обеспечения тлеющего разряда между относительно далеко расположенными электродами.

Для начала разряда или, как говорят, пуска лампы, необходимо либо подать на электроды повышенное напряжение, либо увеличить их эмиссию – способность испускать электроны. Если, к примеру, электроды подогреть, то хватит малейшего толчка, чтобы лампа запустилась. Именно поэтому электроды в ЛЛ выполнены в виде спиралей накаливания.

Электрод в люминесцентной лампе имеет вид спирали с двумя выводами – прямо лампа накаливания в миниатюреПри разогретых электродах высоковольтный разряд тоже нужен, но величина пускового напряжения существенно уменьшается. Это упрощает схему пуска.

Итак, для нормальной работы ЛЛ нужно обеспечить два условия:

1. Запустить прибор.

2. Обеспечить через него рабочий ток.

Именно этим и занимается пускорегулирующий аппарат (ПРА), который в обязательном порядке присутствует в любом люминесцентном светильнике. Он (аппарат) может быть двух типов – электромагнитного и электронного. О каждом типе ПРА мы поговорим отдельно.

ЭмПРА

Поскольку изначально мы говорили о дросселе (нередко его еще называют электромагнитным балластом), начнем с электромагнитного пускорегулирующего аппарата – ЭмПРА. Строго говоря, дроссель – не совсем ЭмПРА. Важная его часть — да, но не единственная. Но все по порядку. Начнем с дросселя. По сути, это обычная катушка индуктивности. Одно из основных свойств любой катушки – способность оказывать электрическое сопротивление переменному току. Таким образом, включив дроссель последовательно с лампой, можно ограничить ее ток до нормальных величин.

Электромагнитные дроссели для люминесцентных лампы

Теперь пуск. Здесь кроме дросселя необходим еще один элемент – стартер. Кратенько коснемся его конструкции и принципа работы.

Конструкция стартера

Прибор представляет собой газосветную (неоновую) лампу 3, в которую впаяны электроды 2 и 1. Первый — просто электрод, а второй выполнен в виде изогнутой биметаллической пластины. Как только в лампе появится тлеющий разряд, электроды начнут нагреваться и, в конце концов, тот, который выполнен из биметалла, разогнется и замкнется с неподвижным. Разряд прекратится, электроды через некоторое время остынут, контакт разорвется. Конденсатор 4 – искрогасящий. А теперь пора посмотреть, как такая схема будет работать.

Схема подключения люминесцентной лампы к ЭмПРА

При включении питания напряжение проходит через дроссель и поступает на электроды люминесцентной лампы. Сопротивление ее газового промежутка велико, разряда не происходит. Пройдя по спиралям электродов, напряжение прикладывается к стартеру. Порог поджигания его неоновой лампы порядка 180 В, поэтому она зажигается и тлеющий разряд начинает подогревать биметаллический электрод.

Через некоторое время контакты стартера замыкаются накоротко, разряд в неоновой лампочке гаснет, а через спирали ЛЛ начинает течь ток, разогревая их. Времени на этот процесс отведено немного (пока не остынет биметаллическая пластина стартера), но вполне достаточно для качественного их разогрева (примерно до 700 градусов Цельсия).

Как только биметаллическая пластина остынет, контакты стартера разомкнутся, и к электродам ЛЛ будет приложено полное напряжение сети. Одновременно в момент размыкания контактов стартера из-за разрыва цепи за счет самоиндукции дроссель создает короткий высоковольтный (до киловольта) импульс напряжения, поджигающий ЛЛ.

Лампа загорается, сопротивление ее газового промежутка падает и в действие включается дроссель, ограничивающий ток в цепи в пределах рабочего. После этого стартер в работе не участвует, поскольку на электродах работающей ЛЛ, а значит, и на его выводах напряжение гораздо ниже порога срабатывания его неоновой лампы.

Интересно отметить, что после пуска ЛЛ ее спиральные электроды остывают не полностью. Под воздействием тлеющего разряда в трубке на них образуется раскаленная область — так называемое катодное пятно, которое на фото ниже помечено стрелкой.

Катодное пятно видно невооруженным глазом Для того, чтобы дроссель поддерживал нужный для конкретной лампы ток, мощность его должна быть равной мощности лампы. С маломощным дросселем лампе не хватит тока для работы, и она тут же погаснет. Ток будет больше – лампа сгорит.

Теперь пару слов о конденсаторе С1. Поскольку дроссель является индуктивностью, на нем рассеивается большая реактивная мощность, причем попусту, просто грея прибор. Конденсатор С1, который называют компенсационным, частично устраняет эту проблему, увеличивая коэффициент мощности (грубо говоря КПД) дросселя.

ЭПРА

Теперь поговорим об электронных пускорегулирующих устройствах — ЭПРА. Задачи у этого устройства те же – пуск ЛЛ и ограничение через нее тока. И хотя задачи те же, выполняются они совершенно по-другому – при помощи электроники. Еще одно существенное отличие ЭПРА от ЭмПРА – первому не нужны дополнительные элементы – стартер и компенсационный стабилизатор.

Конструктивно электронный пускорегулирующий аппарат представляет собой моноблок, в котором размещена электронная схема, создающая высоковольтный разряд в момент пуска лампы и поддерживающая необходимый ток во время ее работы.

Электронное пускорегулирующее устройство и его «внутренности»

Как и электромагнитный собрат, электронный должен иметь ту же мощность, что и применяемые лампы. Отличие же в том, что если электромагнитный балласт рассчитан на работу с одной лампой (или с двумя 110-ти вольтовыми), то электронный в зависимости от конструкции и назначения может «в одиночку» поддерживать работу одной, двух и даже четырех ламп с рабочим напряжением 220 В.

К этому ЭПРА можно подключить четыре люминесцентных лампы с рабочим напряжением 220 В

Еще одно существенное отличие электронного балласта от электромагнитного – в процессе работы прибор преобразует сетевое напряжение частотой 50 Гц в напряжение частотой в несколько десятков килогерц. Что это дает? Люминофор ЛЛ имеет очень малую инерционность, а потому питаясь сетевым напряжением через ЭмПРА, лампа мерцает с частотой 100 Гц.

Из-за инерционности нашего глаза мы этого почти не замечаем, но, по сути, такая лампа представляет собой стогерцовый стробоскоп, в свете которого быстро движущиеся части машин могут казаться неподвижными, что очень опасно. Используя лампы на производстве, с этим недостатком борются, причем весьма успешно — запитывают рядом расположенные светильники от разных фаз или сдвигают на одном из светильников фазу фазосдвигающими конденсаторами, заставляя мигать светильники «вразнобой».

Но, во-первых, – это дает лишь частичный эффект, а, во-вторых, все это требует дополнительных затрат. ЭПРА же, питая лампы напряжением с частотами в десятки килогерц, не допускает даже малейшего мерцания лампы, поскольку инерционность у люминофора хоть и мала, но она есть.

Что касается коэффициента мощности, который у ЭмПРА без компенсационного конденсатора едва дотягивает до 0.4 – 0.5, то электроника вообще не нуждается в таких компенсаторах – она является очень слабой реактивной нагрузкой.

Схему подключения мы рассматривать не будем — она зависит от типа и назначения ЭПРА и, как правило, наносится на корпус устройства вместе с характеристиками ламп, для которых ЭПРА предназначен.

Схема подключения ламп наносится на корпус устройства

Возвращаясь к компактным люминесцентным лампам (КЛЛ) стоит отметить, что в них используются как раз ЭПРА, встроенные в цоколь.

Конструкция КЛЛ

Достоинства и недостатки

Основные принципиальные отличия ЭПРА от ЭмПРА мы выяснили. Осталось подвести итог и разобраться в достоинствах и недостатках приборов обоих типов, которые для удобства восприятия мы сведем в сравнительную табличку.

Сравнительные характеристики ЭПРА и ЭмПРА

Из вышеприведенной таблички хорошо видно, что электронные аппараты имеют неоспоримое преимущество перед электромагнитными. Тем не менее, благодаря своей дешевизне и длительному сроку службы последние пока еще не сдали своих позиций.

Источник: https://zen.yandex.ru/media/id/5c9ca52b27839400b33cc158/5dbe89888f011100ad33c0d0

Правильное подключение лампы ДРЛ

Для чего нужен дроссель в лампах ДРЛ?

Ртутная дуговая лампа высокого давления, является одно из разновидностей электрической лампы. Она широко используется, чтобы осветить крупные объекты, например, заводы, фабрики, складские помещения и даже улицы. Она обладает высокой отдачей света, но при этом не имеет высокой степени качества и светопередача довольно низкая.

Такие устройства обладают очень широким спектром мощности, от пятидесяти до двух тысяч ват, и работают от стандартной сети в 220 вольт, при частоте пятьдесят герц.

Устройство и принцип работы

Работа осуществляется благодаря пуско-регулирующему устройству, состоящему из индуктивного дросселя.

Схема устройства лампы ДРЛ

Состоит такое устройство из трёх основных компонентов:

  • Цоколь  – является основанием и подключается к сети.
  • Кварцевая горелка – центральный механизм прибора.
  • Стеклянная колба – основная защитная оболочка из стекла.

Принцип работы такого устройства очень простой, к лампе подходит напряжение от сети. Ток, доходит к промежутку между одной и второй пар электродов, которые размещены на разных концах лампы. Благодаря небольшому расстоянию, газы легко ионизуются. После ионизации в промежутках между дополнительными электродами, ток поступает на основные, после чего лампа начинает светиться.

Различные виды

Максимально лампа разгорается примерно через семь-десять минут. Это обусловлено тем, что ртуть, которая излучает свет при зажигании, находится сгустком или налётом на стенках колбы и ей необходимо время разогреться. Период полного включения увеличивается спустя некоторое время при эксплуатации.

Классифицируют дрл ламы по форме цоколя, мощности, принципу установки. Очень часто их изготовляют с разного материала, что также может  являться классификацией устройств. Существуют разновидности с добавкой особых паров в конструкцию, например, такие как натриевые лампы, металлогалогенные и ксеноновые.

Существует разновидность с дополнительным излучением красного спектра света. Они называются дуговыми ртутно-вольфрамовыми. Их внешний вид абсолютно не отличается от стандартного устройства дрл 250, но в своей конструкции они имеют специальную накаливающуюся спираль, которая и добавляет красный спектр к световому потоку.

Запускаем лампу без дросселя

Если вы хотите использовать модель дрл 250 как обычно устройство без применения стандартного дросселя, её можно подключить по специальной технологии.

Самым простым вариантом подключения, является покупка специальной дрл 250, которая может работать без дросселя. Она оснащена специальной спиралью, которая работает как стабилизатор и дополнительно разбавляет излучаемый свет.

Одним из вариантов не использовать дроссель, является подключение в схему обычной лампы накаливания. Она должна обладать той же мощность что и дрл, чтобы выдавать необходимое сопротивление и подавать напряжение на источник света дрл 250.

Ещё одним вариантом убрать дроссель из конструкции, является установка конденсатора или группы конденсаторов. Но в таком случае необходимо точно рассчитать выдаваемый ими ток. Он должен полностью соответствовать необходимому напряжению для работы.

(36 2,14 из 5)
Загрузка…

Источник: http://ProOsveschenie.ru/proizvodstvennye-pomeshheniya/pravilnoe-podklyuchenie-lampy-drl.html