Двигатель и мотор в чем разница?

Содержание

Разница между мотором и двигателем

Двигатель и мотор в чем разница?

«Автомобильный мотор, автомобильный двигатель» — оба эти выражения на равных используются в русской речи. «Лодочный двигатель» — звучит несколько непривычно. Словосочетание «реактивный мотор» можно встретить разве что в плохом автоматическом переводе иностранного текста. В чем же различие этих понятий? Попробуем разобраться в вопросе, не углубляясь в академические дебри русского языка.

Мотор

  • Двигатель (внутреннего сгорания или электрический)- так определяет это слово толковый словарь Ожегова.
  • Сердце или машина — такое толкование слова предлагает словарь воровского жаргона.
  • В словаре Ушакова можно обнаружить еще одно значение слова: экипаж, вагон с двигателем, автомобиль.

Термин «мотор» согласно этимологическому словарю русского языка Макса Фасмера заимствован из немецкого языка. Латинские корни прослеживаются в других европейских языках: немецкий «Моtоr», французский «Moteu, английский «Моtоr».

Наиболее часто слово мотор употребляется в значении электрического двигателя или двигателя внутреннего сгорания: электрический мотор, авиационный мотор, лодочный мотор.

Широко используется при образовании сложных слов: мотопомпа, мотопехота, гидромотор. От слова мотор образованы прилагательные «моторный», «моторизированный».

Двигатель

  • Толковый словарь Ожегова выделяет два значения этого термина. Первое — машина, превращающая какой-либо вид энергии в механическую работу. Второе (переносное) — сила, способствующая росту, развитию в какой-либо области.
  • В словаре Ушакова можно найти еще одно, толкование: машина, приводящая что-нибудь в движение.
  • В других словарях двигатель называется механизмом, агрегатом, силовой машиной, энергосиловой машиной, устройством, но смысл один – преобразование какой-нибудь энергии в механическую энергию или работу.

Слово произошло от глагола «двигать», в современном значении стало употребляться в конце ХVIII века, имеет схожие корни в других восточноевропейских языках.

Слово «двигать» отмечается в различных письменных источниках, начиная XI века.

Термин двигатель более распространен в технической литературе. Он охватывает широкую группу понятий, в том числе самые древние и экзотические устройства для приведения в движение чего-либо. Этим словом можно назвать приспособление для движения парусного судна (ветродвигатель), гиревой привод часов-ходиков (гравитационный) или двигатель космической ракеты (реактивный).

Сходство терминов мотор и двигатель

Рассмотренные выше словари определяют данные слова как синонимы. И, действительно, в большинстве случаев оба эти термина употребляются для обозначения устройства, приводящего в движение какой-либо механизм. Если слово применяется для обозначения энергетической установки транспортного средства, промышленного оборудования или бытового устройства, то эти понятия являются равнозначными, а смысловые нюансы незначительными.

Рассмотрим некоторые случаи, когда один из терминов можно заменить другим, без искажения смысла и нарушения стилистики речи:

  • Относится к электрической машине: электромотор, электродвигатель.
  • Относится к двигателю внутреннего сгорания: бензиновый мотор (двигатель).
  • Обозначает силовую установку механического транспортного средства: автомобильный мотор (двигатель).
  • Является приводным устройством для станка, ручного инструмента, бытовой техники: мотор (двигатель) токарного станка.

Различия, особенности употребления

Рассматривая случаи употребления того и другого термина, можно сделать такие наблюдения:

  1. В технической литературе электрическая силовая машина в большинстве случаев называется двигатель. Например: электродвигатель постоянного тока, асинхронный двигатель.
  2. В художественной литературе, в стихах, текстах песен чаще встречается слово мотор.
  3. Двигатель включает более широкую группу понятий, тогда как мотор это преимущественно электродвигатель или ДВС.
  4. Силовую установку, смонтированную на транспортном средстве, обычно называют двигатель, а отдельный агрегат – мотор.
  5. Для обозначения машин небольшой мощности чаще используют слово мотор. Мотор пылесоса, лодочный мотор.
  6. Для мощных устройств используются термины двигатель, силовой агрегат.

Несколько примеров, когда замена одного термина другим будет выглядеть неуместно:

  • Реактивный, ветровой, паровой двигатель.
  • Моторная лодка, моторный завод, моторный отсек автомобиля.
  • Сердце — пламенный мотор, реклама — двигатель торговли.
  • Моторчик, микродвигатель.

Любопытные факты

Интересно, что в английском языке тоже есть два термина для обозначения «сердца» автомобиля: «motor» и «engine». В настоящее время эти понятия стали синонимами, а в XV веке словом engine называли орудие пыток, ловушку, а также хитрость или злой умысел.

Самые большие двигатели устанавливается на океанских судах. Самыми большими двигателями являются судовые! Они достигают мощности свыше 100000 л.с., цилиндр имеет диаметр около 1 метра.

Мы привыкли, что мотор непрерывно вращается, но, оказывается, есть особый двигатель, который может поворачиваться на определенный угол (шаг). Шаговый двигатель применяется, например, в электронных стрелочных часах.

Краткий итог

Это исследование не претендует на исключительную глубину и научность, но позволяет сделать определенные выводы. С технической точки зрения сложно выделить какие-то характерные особенности в понятиях мотор и двигатель. Различия заключаются, прежде всего, в особенностях употребления этих слов в текстах различных стилей и назначений.

Слово мотор, пришедшее в русский язык на заре автомобилестроения постепенно становится менее употребительным, а двигатель, как более универсальное понятие, встречается все чаще, особенно в специальной литературе и в профессиональной речи.

Источник: https://vchemraznica.ru/raznica-mezhdu-motorom-i-dvigatelem/

8 самых известных типов двигателей в мире и их отличия

Двигатель и мотор в чем разница?

Двигатель – это агрегат, который может преобразовать одну энергию в механическую. В эту категорию входит множество видов двигателей, начиная от паровых (двигатели внешнего сгорания) и электрических и заканчивая двигателями внутреннего сгорания (бензиновые, дизельные моторы и т. д.). Мы покажем вам восемь самых известных в мире двигателей, а также просто и интуитивно понятно расскажем вам, как они работают, описав принципы их работы. 

1. Оппозитный двигатель

В горизонтально противоположном двигателе (оппозитном) поршни двигаются по обеим сторонам коленчатого вала влево и вправо в горизонтальном направлении. В этом случае высота двигателя уменьшена. За счет использования оппозитного двигателя уменьшается центр тяжести транспортного средства – автомобиль движется более плавно. Крутящий момент, создаваемый поршнями с обеих сторон, компенсирует друг друга, значительно уменьшая вибрацию транспортного средства во время движения.

Также подобная конструкция позволяет сделать двигатели высокооборотистыми. Но, несмотря на высокие обороты, оппозитные моторы имеют меньше шума, чем обычные ДВС. 

Двигатели с горизонтальным ходом поршней использует компания Porsche почти во всех моделях. Но, например, в Porsche Cayenne и Panamera оппозитные двигатели не применяются. 

2. Рядный двигатель

В рядном двигателе все его цилиндры расположены рядом друг с другом в одной плоскости. Конструкция цилиндров и коленвала довольно-таки проста. Головка блока цилиндров имеет небольшую стоимость при изготовлении. Также рядные двигатели отличаются высокой стабильностью, характеристиками крутящего момента на низких оборотах, низким расходом топлива и компактным размером. Рядные двигатели обычно обозначаются латинской буквой «L-n», где n – количество цилиндров рядного двигателя. Современные автомобили в основном имеют двигатели с обозначением L3, L4, L5, L6.

3. Двигатель V-типа (V-образный силовой агрегат)

V-образный двигатель разделяет все цилиндры на две группы друг напротив друга под определенным углом. В итоге мотор образует плоскость под углом. Если посмотреть на этот тип двигателя со стороны, то он будет иметь V-образную форму. V-образные двигатели имеют небольшую высоту и длину. Этот тип моторов удобнее размещать в автомобиле по сравнению с обычными рядными моторами, которые по своим размерам гораздо больше. 

В настоящее время во многих автомобилях среднего и люкс-класса используются V-образные двигатели. Чаще всего это 6-цилиндровые силовые агрегаты. Например, такие двигатели стоят на Volkswagen Passat, Audi A6 и Mercedes E-класса AMG. 

4. Квазитурбинный двигатель

Квазидвигатель представляет собой модифицированный двигатель, основанный на роторном силовом агрегате. Если в обычном роторном двигателе задействованы три лопасти, то квазидвигатель использует цепной ротор, состоящий из четырех частей. Это беспоршневой роторный мотор с ромбовидным ротором. Преимущество двигателя: это новый тип двигателя небольшого размера, с высокой мощностью, высоким крутящим моментом, который может работать на множестве источников энергии. 

В настоящий момент квазидвигатель не используется ни на одном автомобиле, поэтому невозможно проверить, подходит ли он для замены обычных поршневых двигателей внутреннего сгорания или в качестве лучшей альтернативы обычным роторным моторам. Квазидвигатель все еще находится в стадии создания прототипа. 

5. Роторный двигатель

Внутреннее пространство корпуса роторного двигателя всегда разделено на три рабочие камеры. Во время движения ротора объем трех рабочих камер постоянно изменяется. Двигатель также имеет четыре такта: впуск, сжатие, сгорание и выпуск последовательно завершаются в циклоидальном цилиндре.

Роторный двигатель сильно отличается от обычных поршневых двигателей внутреннего сгорания. Себестоимость производства роторных моторов существенно больше, также как и их последующее обслуживание и ремонт. Кроме того поршневой двигатель по сравнению с роторным эффективней с точки зрения мощности, веса, выбросов и энергопотребления.

В сочетании с этим, а также в связи со странности технологий роторного двигателя, крупные автомобильные компании пришли к выводу, что использование роторных силовых агрегатов в автопромышленности бессмысленно. Так как роторные моторы не показали своих преимуществ перед обычными, у автомобильных компаний не появилось энтузиазма по их дальнейшей разработке. Только компания Mazda до сих пор тратит огромные деньги на разработку новых поколений роторных моторов. 

6. Двигатель Green Steam

Green Steam – эффективный, экономичный и простой двигатель, разработанный изобретателем Робертом Грином из Лагуна Вудс, Калифорния, США. Этот мотор преобразует избыточное тепло в водяной пар, который и приводит в движение силовой агрегат. Легкий и компактный двигатель Green Steam преобразует возвратно-поступательное движение во вращательное. Его основной характеристикой является гибкий вал, который передает возвратно-поступательное движение от поршней к кривошипу «Z», таким образом, совершая вращательное движение, не используя запястья, шатуны или коленчатые валы.

Этот мотор может использоваться для воздушных насосов, генераторов, водяных насосов, воздуходувок горячего воздуха, аппаратов дистилляции воды, тепловых насосов, кондиционеров, модельных самолетов и т. д. 

Одним из наиболее уникальных преимуществ двигателя является его способность генерировать энергию из тепла двигателей. По существу, отработанное тепло выхлопных газов от двигателя транспортного средства может быть преобразовано в энергию, используемую для некоторых систем охлаждения и насосов транспортного средства. Этот двигатель повысит уровень эффективности любого транспортного средства или системы машины, на которой он установлен.

7. Двигатель Стирлинга

Двигатель Стирлинга относится к типам силовых агрегатов внешнего сгорания. Основан на периодическом нагреве и охлаждении рабочего тела с извлечением энергии из возникающего при этом изменении давления. Принцип работы двигателя Стирлинга заключается в постоянном сжатии рабочего цилиндра, в результате чего происходит нагревание его внутренней части, а затем охлаждение. Из-за перепада давления из цилиндра извлекается энергия, образуемая при изменении давления. Обычно в качестве рабочего тела используется водород или гелий. Но чаще в таких моторах используется воздух. 

Двигатели Стирлинга отлично подходят для преобразования тепла в электроэнергию. Например, многие специалисты считают, что эти моторы подходят для солнечных электрических установок. 

То есть это идеальные силовые агрегаты для преобразования солнечной энергии в электричество. 

8. Радиальный двигатель (звездообразный)

Звездообразный двигатель представляет собой поршневой двигатель внутреннего сгорания, в котором цилиндры расположены вокруг коленчатого вала. Один поршень соединен с коленвалом через главный шатун. Остальные поршни прикреплены через шатуны к кольцам главного ведущего шатуна. 

Двигатель преимущественно создан для использования в самолетах. До появления реактивных двигателей в большинстве поршневых авиационных двигателей использовались подобные звездообразные конструкции силовых агрегатов. Эти моторы, как правило, устанавливались на самолеты небольшой дальности. Остальные самолетные моторы имели V-образную форму. 

Некоторые современные легкие самолеты до сих пор оснащаются радиальными моторами.

Ряд компаний продолжает строить радиальные системы сегодня. Например, вот современный авиационный радиальный 9-цилиндровый двигатель Веденеев мощностью 360–450 л. с., который в настоящий момент используется на самолетах Яковлева и Сухого.

Источник: https://1gai.ru/publ/522108-8-samyh-izvestnyh-tipov-dvigateley-v-mire-vot-chem-oni-otlichayutsya.html

Как правильно двигатели или двигателя?

Двигатель и мотор в чем разница?

» Прочее »

Вопрос знатокам: двигателя или двигатели как правильно говорить. У нас есть двигателя или двигатели.

С уважением, валера овчар

Лучшие ответы

«Два двигателЯ», «в продаже имеются двигателИ различных видов»

У нас на работе говорят «Супа»-это в столовой разносить супа, млять.. Много супов-это супа.

не знаешь как, говори «много или несколько двигателей»

Правильно двигатели, если допустим объявление писать будешь. Но говорить можно и двигателя, какой же русский правильно все слова произносит, в народе по правилам не разговаривают и это тоже русский язык между прочим.

-ответ

Это видео поможет разобраться

Ответы знатоков

Двигло, движок, котел, в общем — двигатель

Один член. Но в литературе — двигатель.

мотор это на каком-то языке значит двигатель, то ли у фрицев то ли еще у кого

Читайте также  Зачем нужна катушка индуктивности в цепи?

Мотор правильнее. Двигатель для разной куйни можно говорить. Реклама-двигатель прогресса, например. Блядь, торговли, перепутал.

ДВС- двигатель внутреннего сгорания!

смотря что ты имеешь ввиду

Одна херня, что мотор, что двигатель — ДВС (Двигатель Внутреннего Сгорания)

Двигатель, энергосиловая машина, преобразующая какой-либо вид энергии в механическую работу. bricon m/partner.asp?aid={B0103E74-D8AE-4E9E-8D1F-019A20FD1F7D}&ext=0

Внимание! Говоря о работе, которую производит двигатель, мы не говорим о том, что эта работа вызывает именно движение чего-либо!

Теперь рассмотрим понятие Движитель ( slovari.yandex /dict/bse/article/00021/86200 )
Здесь дано более четкое определение, увязывающее работу устройства и именно движение транспортного средства.

Движитель,
устройство для преобразования энергии природного источника или механического двигателя в полезную работу, обеспечивающую движение транспортных средств.

Лучше всего отличие двигателя от движителя проиллюстрировать на примерах:

Основным видом движителя для сухопутных транспортных средств является колесо, взаимодействующее с полотном дороги (в автомобилях, мотоциклах и т. п.) , или с рельсовой колеей (в трамваях, локомотивах и т. п.) . Для движения по мягкому грунту и бездорожью применяют гусеничный ход (в тракторах, танках, снегоходах) . Перемещение больших масс на незначительном расстояния может осуществляться шагающими движителяvb (например, в экскаваторах) .

Движителем, преобразующим энергию ветра, является парус; для использования энергии восходящих воздушных потоков применяется парящая плоскость (в планёрах) или гибкий купол (в парашютах) . Для движения в воздухе, по суше и на воде применяют воздушный винт (в самолётах, вертолётах, дирижаблях, аэросанях, глиссерах, судах на воздушной подушке) . Для движения судов применяют вёсла, гребные винты и гребные колёса, крыльчатые движители, а также водомётные движители. Для перемещения в воздушной среде и космическом пространстве широко применяют движители в виде реактивного сопла.

двигатель — двигает что-то. . а движетель — движется сам =)

Двигатель сообщает энергию для жвижения, движетель — ее только преобразует. Мотор — двигатель,

винт, колесо, гусеница и т. п. — движители

Характерным свойством движителя является взаимодействие со средой. Для лошади движитель — ноги и, самое главное, копыта. Именно копыта взаимодействуют со средой — дорогой. У автомобиля ведущие колёса — движитель. Прочие — нет. Но при торможении картина меняется. Все ведущие. Водомётный двигатель является частным случаем реактивного двигателя. А реактивный двигатель потому и позволяет перемещение даже в космосе, что со средой не взаимодействует. Обходится.

Можно считать для водомётного устройства движителем струю вылетающего рабочего тела — воды. Тем более, что, всё таки не космос. Вода из среды забирается и в среду выбрасывается.

Вот у автомобиля двигатель — это то, что под капотом, а движитель — это колеса.

То есть, двигатель — это устройство для переработки энергии разных форм в механическую форму, а движитель — это устройство для переработки механической энергии в форму поступательного движения судна.

Отличие понятия «двигатель» от понятия «движетель» вымышленное! Разница подстегнута ошибкой во втором слове, которое правильно пишется — «движитель». Суть этих двух понятий одна — оба обозначают приведение в движение чего-то, с помощью своего источника силы.

«Двигатель» внутреннего сгорания, преобразующий силу расширяющихся газов, возникающих от сжигания топлива, во вращение коленчатого вала, валов коробки передач автомобиля и «движитель» — автомобильные колеса преобразующие вращающую их силу в поступательное движение автомобиля.

Слово «движитель» явно придумали конструкторы, нашедшие способ сокращения длинного, но более верного выражения — способ применения источника силы. В русском языке оба слова имеют равный смысл.

Двигатель — это статистическое механическое или иное устройство преобразующее какой-либо вид энергии в механическую работу.

Движитель — это механическое или иное устройство преобразующее механическую или иную работу в силу перемещающую предметы и тела в пространстве.

ДВС — Двигатель
АКПП — Движитель

Источник: https://dom-voprosov.ru/prochee/kak-pravilno-dvigateli-ili-dvigatelya

Виды двигателей внутреннего сгорания

Двигатель и мотор в чем разница?

Мало кто знает, что двигатель внутреннего сгорания был изобретён ещё 5 веков назад, легендарным инженером и конструктором Леонардо да Винчи. Но, после первого чертежа потребовалось ещё 300 лет, чтобы были созданы первые прототипы, которые могли полноценно работать.

Виды двигателей

Первый полноценный прототип двигателя внутреннего сгорания был сконструирован в далёком 1806 году, который принадлежал братьям Ньепсье. После этого важного исторического факта было недолгое затишье.

Но, в конце 19 века три легендарным немца положили старт автомобилестроению — Николас Отто, Готлиб Даймлер и Вильгельм Майбах. После этого двигатели внутреннего сгорания получили много модификаций и вариантов, которые используются по сегодняшний день.

Рассмотрим, какие существуют виды автомобильных ДВС, а также укажем типы двигателей:

  • Паровая машина
  • Бензиновый двигатель
  • Карбюраторная система впрыска
  • Инжектор
  • Дизельные двигатели
  • Газовый двигатель
  • Электрические моторы
  • Роторно-поршневые ДВС

Паровая машина

Первым представителем полноценного двигателя внутреннего сгорания следует считать паровую машину, которая устанавливалась на все транспортные средства 19 века, до момента изобретения остальных видов моторов.

На то время паровыми движками оснащались паровозы, автомобили и даже примитивные трёхколёсные самоходные машины (напоминающие мотоциклы). Изобретение такого класса завоевало весь мир, но к концу 19 — начало 20 века стало неэффективное, поскольку транспортные средства на пару не могли развивать достаточно большую скорость.

Бензиновый двигатель

Бензиновый двигатель — это ДВС средством питания, которого является бензин. Горючее подаётся с топливного бака при помощи насоса (механического или электрического) на систему впрыска. Итак, рассмотрим, какие бывают типы бензиновых моторов:

  • С карбюратором.
  • Инжекторного типа.

Современный мир привык, что большинство автомобилей имеет электронную систему впрыска топлива (инжектор).

Карбюраторная система впрыска

Карбюратор — это тип впрыскового устройства горючего во впускной коллектор с дальнейшим распределением по цилиндрам. Первый примитивный карбюратор был разработан в Германии ещё в конце 19 века и имеет почти 100 летнюю историю развития.

Карбюраторы бывают — одно-, двух-, четырех- и шестикамерные. Кроме этого существует достаточно много прототипов.

Принцип работы карбюратора достаточно простой: бензонасос подаёт топливо в поплавковую камеру, где бензин проходит сквозь жиклёры механическим путём (количество впрыскиваемого топлива регулирует водитель при помощи педали акселератора), и подаётся во впускной коллектор. Недостатком карбюратора стало то, что он чувствительный к регулировкам, а также не соответствует экологическим международным нормам.

Инжектор

Инжекторный двигатель — это тип впрыскового устройства горючего в цилиндры двигателя. Инжекторный впрыск бывает моно и разделённым Данная система на сегодняшний день все больше совершенствуется, чтобы уменьшит выбросы СО2 в атмосферу. Для впрыска используются форсунки, которые ещё ранее начали использоваться на дизельных двигателях.

С переходом на данную систему транспортные средства стали оснащать электронными блоками управления двигателем, чтобы корректировать состав воздушно-топливной смеси, а также сигнализировать о неисправностях внутри системы.

Дизельные двигатели

Дизельный мотор — это вид двигателя, который расходует как горючее дизельное топливо. Основные системы и элементы движка идентичны бензиновому брату, различие состоит в системе впрыска и воспламенении смеси. В дизельном моторе отсутствуют свечи зажигания, поскольку воспламенение смеси от искры не нужно.

На моторах такого типа устанавливаются свечи накала, которые разогревают воздух в камере сгорания, который превышает температуру воспламенения. После этого через форсунки подаётся распылённое топливо, которое сгорает, чем создаёт достаточное давление для привода в движения поршня, который раскручивает коленчатый вал.

Дизель с турбонаддувом

Одним из подвидов дизельного ДВС считается турбодизель. На этом моторе установлена турбина, которая имеет вид улитки. При помощи турбины в мотор подаётся больше количество сжатого воздуха, который даёт больше детонационный эффект, за счёт чего движок можно быстрее разогнать.

Газовый двигатель

Газовые двигатели на сегодняшний день в автоиндустрии в чистом виде почти не используются, поскольку частые поломки моторов, стали причиной полного отказа от них. Вместо этого, газовые установки зачастую можно встретить на бензиновых автомобилях, что значительно экономит расход денег на горючее.

Газ с баллона подаётся на редуктор, который распределяет топливо по цилиндрам, а затем горючее попадает непосредственно в камеры сгорания. После этого с помощью свечей зажигания газ воспламеняется. Единственным недостатком использования газовой установки считается то, что мотор теряет 20% своего потенциального ресурса.

Электрические моторы

Николас Тесла впервые предложил использовать для автомобилей электроэнергию. Электрические моторы на сегодняшний день не распространены, поскольку заряда батареи хватает только до 200 км пути, а заправочных станций, которые могут предоставить услугу зарядки автомобиля — практически нет.

Известная мировая компания, производитель электрических автомобилей «Тесла» продолжает совершенствовать электродвигатели, и каждый год дарит потребителям новинки, которые имеют больший запас хода без дозарядки.

Гибриды

Наверное, самые желаемые двигатели на сегодняшний день. Это смесь бензинового двигателя внутреннего сгорания и электромотора. Существует несколько вариантов работы такого движка.

  1. Мотор может работать на попеременном питании. Сначала движение производится на бензине, пока генератор заряжает батарею, а затем водитель может переключиться на электропитание.
  2. Двигатель и электромотор работают одновременно, что помогает сэкономить расход горючего на одно, и тоже расстояние с другими типами ДВС.

Роторно-поршневые ДВС

Роторно-поршневой силовой агрегат в автомобилестроении не нашёл широкого распространения, хотя можно встретить модели автомобилей, которые используют такой тип ДВС. Предложил создание такого мотора — конструктор Ванкель.

Движение осуществляется за счёт вращения трёхзубчатого ротора, который позволяет осуществить любой 4-тактный цикл Дизеля, Стирлинга или Отто без применения специального механизма газораспределения. Данный мотор активно использовался в 80-е годы 20 ст.

Водородный мотор

НОУ-ХАУ современного мира считается водородный двигатель. В автомобиль устанавливается установка водородного типа. Отличие от бензиновых моторов заключается в подаче топлива. Если у бензина топливо подаётся вовремя возврата поршня к ВТМ, то у водородного силового агрегата в момент, когда поршень возвращается к НТМ.

В будущем планируется создать водородный двигатель закрытого типа, когда не будет требоваться выброс отработанных газов, а также на 500 км автолюбитель сможет забить о заправке автомобиле.

Стоит понимать, что автомобили с таким мотором будут стоить весьма не дёшево, пока они полностью не вытеснят бензинового брата.

Вывод

Двигатели внутреннего сгорания имеют достаточно большое количество видов и типов, на любой вкус. Так, самыми популярными, по мировой статистике, считают бензиновые, дизельные и гибридные силовые агрегата. Но, все движется к тому, что человек хочет отойти от использования бензина и его аналогов и перейти полностью на электрику.

Источник: https://avtodvigateli.com/vidy/vidy-dvs.html

Разновидности ДВС: какие существуют двигатели внутреннего сгорания

Двигатель и мотор в чем разница?

Поршневой ДВС (двигатель внутреннего сгорания) является тепловой машиной и работает по принципу сжигания смеси топлива и воздуха в камере сгорания. Главной задачей такого устройства выступает преобразование энергии сгорания топливного заряда в механическую полезную работу.

Не смотря на общий принцип действия, сегодня существует большое количество агрегатов, которые существенно отличаются друг от друга благодаря целому ряду индивидуальных конструктивных особенностей. В этой статье мы поговорим о том, какие бывают двигатели внутреннего сгорания, а также в чем состоят их главные особенности и отличия.

Типы двигателей внутреннего сгорания

Начнем с того, что ДВС может быть двухтактным и четырехтактным. Что касается автомобильных моторов, указанные агрегаты четырехтактные. Такты работы двигателя представляют собой:

  • впуск топливно-воздушной смеси или воздуха (что зависит от типа ДВС);
  • сжатие смеси горючего и воздуха;
  • сгорание топливного заряда и рабочий ход;
  • выпуск из камеры сгорания отработавших газов;

По такому принципу работают как бензиновые, так и дизельные поршневые моторы, которые нашли широкое применение в автомобилях и на другой технике. Также стоит упомянуть и агрегаты на газу, в которых газовое топливо сжигается аналогично дизтопливу или бензину.

Бензиновые силовые агрегаты

Что касается поршневых бензиновых моторов, такие двигатели имеют систему зажигания для воспламенения рабочей смеси от искры. Системы питания в таких агрегатах могут быть карбюраторными или инжекторными (впрысковыми).

Приготовление рабочей смеси в карбюраторных ДВС происходит в карбюраторе, далее смешанный бензин и воздух подаются во впускной коллектор. Сегодня такие системы считаются устаревшими, так как не способны обеспечить двигателю должную экологичность и экономичность.

Впрысковые ДВС по типу конструкции системы питания бывают моноинжекторными (моновпрыск) или системами с распределенным впрыском. В первом случае схема предполагает наличие только одной форсунки, которая впрыскивает горючее во впускной коллектор. Решения с распределенным впрыском имеют отдельную форсунку на каждый цилиндр, которая установлена рядом с впускными клапанами.

Такая система питания, особенно распределенный впрыск, позволяет увеличить мощность мотора, при этом достигается топливная экономичность и происходит снижение токсичности отработавших газов. Это стало возможным благодаря точной дозировке подаваемого топлива под управлением ЭСУД (электронная система управления двигателем).

Дальнейшее развитие систем топливоподачи привело к появлению моторов с прямым (непосредственным) впрыском. Главным их отличием от предшественников является то, что воздух и топливо подается в камеру сгорания отдельно. Другими словами, форсунка устанавливается не над впускными клапанами, а монтируется прямо в цилиндр.

Подобное решение позволяет подавать топливо напрямую, причем сама подача разделена на несколько этапов (подвпрысков). В результате удается добиться максимально эффективного и полноценного сгорания топливного заряда, двигатель получает возможность  работать на бедной смеси (например, моторы семейства GDI), падает расход топлива, снижается токсичность выхлопа и т.д.

Дизельные моторы

Дизельный двигатель работает на дизтопливе, а также в значительной мере отличается от бензинового. Основное отличие заключается в отсутствии искровой системы зажигания.  Воспламенение смеси топлива и воздуха в дизеле происходит от сжатия.

Если просто, сначала в цилиндрах сжимается воздух, который сильно нагревается. В последний момент происходит впрыск солярки прямо в камеру сгорания, после чего нагретая и сильно сжатая смесь воспламеняется самостоятельно.

Если сравнивать дизельные и бензиновые ДВС, дизель отличается более высокой экономичностью, лучшим КПД и максимумом крутящего момента, который доступен на низких оборотах. С учетом того, что дизели развивают больше тяги при меньших оборотах коленвала, на практике такой мотор не нужно «крутить» на старте, а также можно рассчитывать на уверенный подхват с самых «низов».

Однако в списке минусов таких агрегатов можно выделить чувствительную топливную систему, а также больший вес и меньшие скорости в режиме максимальных оборотов. Дело в том, что дизель изначально «тихоходный» и имеет меньшую частоту вращения коленчатого вала по сравнению с бензиновыми ДВС.

Дизели также отличаются большей массой, так как особенности воспламенения от сжатия предполагают более серьезные нагрузки на все элементы такого агрегата. Другими словами, детали в дизельном моторе более прочные и тяжелые. Также дизельные моторы более шумные, что обусловлено процессом воспламенения и сгорания дизельного топлива.

Роторный двигатель

Двигатель Ванкеля (роторно-поршневой двигатель) представляет собой принципиально иную силовую установку.  В таком ДВС привычные поршни, которые совершают возвратно-поступательные движения в цилиндре, попросту отсутствуют. Главным элементом роторного мотора является ротор.

Указанный ротор вращается по заданной траектории. Роторные ДВС бензиновые, так как подобная конструкция не способна обеспечить высокую степень сжатия рабочей смеси.

К плюсам относят компактность, большую мощность при незначительном рабочем объеме, а также способность быстро раскручиваться до высоких оборотов. В результате автомобили с таким ДВС обладают выдающимися разгонными характеристиками.

Читайте также  Как узнать где идет проводка в стене?

Если говорить о минусах, то стоит выделить заметно сниженный ресурс сравнительно с поршневыми агрегатами, а также высокий расход топлива. Также роторный двигатель отличается повышенной токсичностью, то есть не совсем вписывается в современные экологические стандарты.

Гибридный двигатель

Гибридный силовой агрегат фактически является сочетанием поршневого бензинового или дизельного ДВС и электромотора. Также в конструкции присутствует тяговая аккумуляторная батарея, которая питает электродвигатель.

Гибрид работает по принципу максимальной экономии топлива, то есть двигатель внутреннего сгорания задействуется только в определенных режимах. При спокойной езде колеса вращает электромотор, а ДВС подключается тогда, когда батарея разряжается, необходимо интенсивное ускорение ТС, нагрузки достаточно высокие т.п.

Также во время работы гибридной установки активно используется схема рекуперации энергии. Например, во время торможения двигателем работает генератор, который подзаряжает тяговый аккумулятор. Такое сочетание двух типов силовых установок позволяет получить улучшение разгонной динамики (особенно когда одновременно задействован ДВС и электромотор), наблюдается существенная экономия топлива и малый выброс токсичного выхлопа.

Компоновка и технические характеристики ДВС

Еще стоит добавить, что существуют многочисленные разновидности двигателей внутреннего сгорания, которые отличаются друг от друга по компоновке и расположению цилиндров.

Дело в том, что пространство в моторном отсеке ограничено, при этом на разных автомобилях возникает необходимость уместить в таком пространстве агрегат с тем или иным количеством цилиндров.

Как правило, по компоновке на большинстве машин чаще всего можно встретить:

  • рядный двигатель;
  • V-образный мотор;
  • оппозитный двигатель;

Рядный двигатель означает, что все его цилиндры  расположены в одной плоскости. Рядные «четверки» (4-х цилиндровый мотор) являются самым распространенным типом ДВС. Рядные «шестерки»  также весьма популярны, они меньше вибрируют, имеют  приемлемую мощность, однако такой двигатель получается достаточно длинным.

Еще одним вариантом является V-образный двигатель. Цилиндры в таком моторе располагаются в двух плоскостях,  напоминая литеру «V». Подобный ДВС имеет 6 или 8 цилиндров (V6 или V8), при этом длина двигателя сравнительно с рядным мотором меньше, хотя ширина закономерно увеличивается. Еще добавим, что угол между плоскостями принято называть углом развала.

Также отдельного внимания заслуживает оппозитный двигатель. Примечательно, что такая компоновка предполагает угол развала 180 градусов. Фактически, цилиндры и поршни находятся друг напротив друга, а сам агрегат называется «boxer». Такое расположение позволило уменьшить высоту оппозитника, снизить уровень вибраций, улучшить развесовку и т.д.

Добавим, что существуют так называемые двигатели типа VR. Их особенностью является малый угол развала, позволяя уменьшить размеры ДВС в длину и ширину. Также стоит упомянуть мощные W-двигатели. Указанные силовые агрегаты многоцилиндровые (например, W12) Что касается компоновки, конструкция может включать в себя сразу три ряда цилиндров, которые расположены под большим углом развала.

Рекомендуем также прочитать статью о том, что такое оппозитный двигатель. Из этой статьи вы узнаете об особенностях конструкции, а также об основных преимуществах и недостатках моторов данного типа.

Еще одним вариантом является расположение тех же трех рядов цилиндров, при этом угол развала максимально уменьшен (как и в случае с VR-компоновкой). Как правило, именно  последний вариант прижился на мощных легковых авто класса «премиум», спорткарах и солидных внедорожниках. Дело в том, что даже при таком количестве цилиндров двигатель все равно отличается  компактностью.

Основные технические параметры ДВС

Двигатели внутреннего сгорания также имеют целый ряд характеристик и параметров, которые закладываются конструктивно. Если просто, речь идет о рабочем объеме, степени сжатия, мощности и крутящем моменте и т.д.

Наибольший интерес для рядового обывателя, конечно же, представляет мощность и моментная характеристика. Крутящий момент, который создается на коленчатом валу, фактически указывает на то, какая сила тяги будет передаваться на колеса.

Естественно, чем большим окажется показатель крутящего момента, тем большей будет тяга. Другими словами, от данного показателя зависит разгонная динамика. Что касается мощности двигателя, это величина, которая отображает произведенную работу за единицу времени.

Увеличение крутящего момента и мощности возможно посредством двух способов:

  • больший рабочий объем;
  • сжигание большего количества топливно-воздушной смеси;

Если просто, в первом случае речь идет о физическом увеличении  камеры сгорания и объема цилиндров. Во втором подразумевается принудительная подача воздуха в цилиндры под давлением для сжигания большего количества топлива.

Как правило, мощные двигатели с большим объемом атмосферные, то есть «засасывают» наружный воздух в цилиндры самостоятельно благодаря возникающему разрежению от движения поршней. Мощные агрегаты, при этом обладающие меньшим объемом, оснащаются механическими компрессорами или турбонаддувом. В таких ДВС воздух нагнетается принудительно, то есть поступает  в камеру сгорания под давлением.

Что в итоге

Как видно, приведенный выше материал дает общее представление о том, какие есть двигатели внутреннего сгорания. При этом  даже с учетом общего принципа действия, силовые агрегаты могут значительно отличаться по таким показателям, как компоновка, мощность, крутящий момент, расход горючего и т.д.

Рекомендуем также прочитать статью о том, что такое двигатель GDI. Из этой статьи вы узнаете об особенностях конструкции, принципах работы,а также плюсах и минусах моторов данного типа.

Более того, даже двигатели, схожие по конструкции (например, рядный четырехцилиндровый мотор), могут иметь разное количество впускных и выпускных клапанов на один цилиндр (например, 8-и и 16-клапанные моторы).

На одних ДВС для получения необходимой мощности используется система изменения фаз газораспределения в комплексе с турбонаддувом, тогда как на других с точно таким же рабочим объемом и компоновкой такие решения отсутствуют.

По этой причине для объективной оценки производительности того или иного двигателя на разных оборотах, причем не на коленвалу, а на колесах, необходимо проводить специальные комплексные замеры на динамометрическом стенде.

Источник: http://KrutiMotor.ru/kakie-byvayut-dvigateli-vnutrennego-sgoraniya/

Принцип работы и устройство двигателя

Двигатель и мотор в чем разница?

Двигатель внутреннего сгорания называется так потому что топливо воспламеняется непосредственно внутри его рабочей камеры, а не в дополнительных внешних носителях. Принцип работы ДВС основан на физическом эффекте теплового расширения газов, образующихся в процессе сгорания топливно-воздушной смеси под давлением внутри цилиндров двигателя. Выделяемая в этом процессе энергия преобразуется в механическую работу.

В процессе эволюции ДВС выделились несколько типов двигателей, их классификация и общее устройство:

  • Поршневые двигатели внутреннего сгорания. В них рабочая камера находится внутри цилиндров, а тепловая энергия преобразуется в механическую работу посредством кривошипно-шатунного механизма, передающего энергию движения на коленчатый вал. Поршневые моторы делятся, в свою очередь, на:
    • карбюраторные, в которых воздушно-топливная смесь формируется в карбюраторе, впрыскивается в цилиндр и воспламеняется там искрой от свечи зажигания;
    • инжекторные, в которых смесь подаётся напрямую во впускной коллектор, через специальные форсунки, под контролем электронного блока управления, и также воспламеняется посредством свечи;
    • дизельные, в которых воспламенение воздушно-топливной смеси происходит без свечи, посредством сжатия воздуха, который от давления нагревается до температуры, превышающей температуру горения, а топливо впрыскивается в цилиндры через форсунки.
  • Роторно-поршневые двигатели внутреннего сгорания. Здесь тепловая энергия преобразуется в механическую работу посредством вращения рабочими газами ротора специальной формы и профиля. Ротор движется по «планетарной траектории» внутри рабочей камеры, имеющей форму «восьмёрки», и выполняет функции как поршня, так и ГРМ (газораспределительного механизма), и коленчатого вала.
  • Газотурбинные двигатели внутреннего сгорания. Особенности их устройства заключаются в преображении тепловой энергии в механическую работу с помощью вращения ротора со специальными клиновидными лопатками, который приводит в движение вал турбины.

Далее рассматриваются только поршневые двигатели, так как только они получили широкое распространение в автомобильной промышленности. Основные причины тому: надежность, стоимость производства и обслуживания, высокая производительность.

Устройство двигателя внутреннего сгорания

Схема устройства двигателя.

Первые поршневые ДВС имели лишь один цилиндр небольшого диаметра. В дальнейшем, для увеличения мощности сначала увеличивали диаметр цилиндра, а потом и их количество. Постепенно двигатели внутреннего сгорания приняли привычный нам вид. “Сердце” современного автомобиля может иметь до 12 цилиндров.

Наиболее простым является двигатель с рядным расположением цилиндров. Однако, с увеличением количества цилиндров растет и линейный размер двигателя. Поэтому появился более компактный вариант расположения — V-образный. При таком варианте цилиндры расположены под углом друг к другу (в пределах 180-ти градусов). Обычно используется для 6-цилиндровых двигателей и более.

Одна из основных частей двигателя — цилиндр (6), в котором находится поршень (7), соединенный через шатун (9) с коленчатым валом (12). Прямолинейное движение поршня в цилиндре вверх и вниз шатун и кривошип преобразуют во вращательное движение коленчатого вала.

На конце вала закреплен маховик (10), назначение которого придавать равномерность вращению вала при работе двигателя. Сверху цилиндр плотно закрыт головкой блока цилиндров (ГБЦ), в которой находятся впускной (5) и выпускной (4) клапаны, закрывающие соответствующие каналы.

Клапаны открываются под действием кулачков распределительного вала (14) через передаточные механизмы (15). Распределительный вал приводится во вращение шестернями (13) от коленчатого вала.
Для уменьшения потерь на преодоление трения, отвод теплоты, предотвращения задиров и быстрого износа трущиеся детали смазывают маслом. В целях создания нормального теплового режима в цилиндрах двигатель должен охлаждаться.

Но главная задача – заставить работать поршень, ведь именно он является главной движущей силой. Для этого в цилиндры должны подаваться горючая смесь в определенной пропорции (у бензиновых) или отмеренные порции топлива в строго определенный момент под высоким давлением (у дизелей). Топливо воспламеняется в камере сгорания, отбрасывает поршень с большой силой вниз, тем самым приводя его в движение.

Принцип работы двигателя

Схема работы двигателя.

Из-за низкой производительности и высокого расхода топлива 2-тактных двигателей практически все современные двигатели производят с 4-тактными циклами работы:

  1. Впуск топлива;
  2. Сжатие топлива;
  3. Сгорание;
  4. Вывод отработанных газов за пределы камеры сгорания.

Точка отсчета — положение поршня вверху (ВМТ — верхняя мертвая точка). В данный момент впускное отверстие открывается клапаном, поршень начинает движение вниз и засасывает топливную смесь в цилиндр. Это первый такт цикла.

Во время второго такта поршень достигает самой нижней точки (НМТ — нижняя мертвая точка), при этом впускное отверстие закрывается, поршень начинает движение вверх, из-за чего топливная смесь сжимается. При достижении поршнем максимальной верхней точки топливная смесь сжата до максимума.

Третий этап – это поджигание сжатой топливной смеси с помощью свечи, которая испускает искру. В результате горючий состав взрывается и толкает поршень с большой силой вниз.

На заключительном этапе поршень достигает нижней границы и по инерции возвращается к верхней точке. В это время открывается выпускной клапан, отработанная смесь в виде газа выходит из камеры сгорания и через выхлопную систему попадает на улицу. После этого цикл, начиная с первого этапа, повторяется снова и продолжается в течение всего времени работы двигателя.

Описанный выше способ является универсальным. По такому принципу построена работа практически всех бензиновых моторов. Дизельные двигатели отличаются тем, что там нет свеч зажигания – элемента, который поджигает топливо. Детонация дизельного топлива осуществляется благодаря сильному сжатию топливной смеси. При такте «впуск» в цилиндры дизеля поступает чистый воздух. Во время такта «сжатие» воздух нагревается до 600О С. В конце этого такта в цилиндр впрыскивается определенная порция топлива, которое самовоспламеняется.

Вышеописанное представляет собой БЦ (блок цилиндров) и КШМ (кривошипно-шатунный механизм). Помимо этого современный ДВС состоит и из других вспомогательных систем, которые для удобства восприятия группируют следующим образом:

  1. ГРМ (механизм регулировки фаз газораспределения);
  2. Система смазки;
  3. Система охлаждения;
  4. Система подачи топлива;
  5. Выхлопная система.

Чтобы в цилиндр поступало нужное количество топлива и воздуха, а продукты сгорания вовремя удалялись из рабочей камеры, в ДВС предусмотрен механизм, называемый газораспределительным. Он отвечает за открытие и закрытие впускных и выпускных клапанов, через которые в цилиндры поступает топливо-воздушная горючая смесь и удаляются выхлопные газы. К деталям ГРМ относятся:

  • Распределительный вал;
  • Впускные и выпускные клапаны с пружинами и направляющими втулками;
  • Детали привода клапанов;
  • Элементы привода ГРМ.

ГРМ приводится в действие от коленчатого вала двигателя автомобиля. С помощью цепи или ремня вращение передается на распределительный вал, который посредством кулачков или коромысел через толкатели нажимает на впускной или выпускной клапан и по очереди открывает и закрывает их.

В любом моторе есть множество трущихся деталей, которые необходимо постоянно смазывать, чтобы уменьшить потери мощности на трение и избежать повышенного износа и заклинивания. Для этого существует система смазки. Попутно с ее помощью решается еще несколько задач: защита деталей двигателя внутреннего сгорания от коррозии, дополнительное охлаждение деталей мотора, а также удаление продуктов износа из мест соприкосновения трущихся частей. Систему смазки двигателя автомобиля образуют:

  • Масляный картер (поддон);
  • Насос подачи масла;
  • Масляный фильтр с редукционным клапаном;
  • Маслопроводы;
  • Масляный щуп (индикатор уровня масла);
  • Указатель давления в системе;
  • Маслоналивная горловина.

Во время работы мотора его детали соприкасаются с раскаленными газами, которые образуются при сгорании топливо-воздушной смеси. Чтобы детали двигателя внутреннего сгорания не разрушались из-за чрезмерного расширения при нагреве, их необходимо охлаждать. Охладить мотор автомобиля можно с помощью воздуха или жидкости. Современные моторы имеют, как правило, жидкостную схему охлаждения, которую образуют следующие части:

  • Рубашка охлаждения двигателя;
  • Насос (помпа);
  • Термостат;
  • Радиатор;
  • Вентилятор;
  • Расширительный бачок.

Система питания для двигателей внутреннего сгорания с воспламенением от искры и от сжатия отличаются друг от друга, хотя и имеют ряд общих элементов. Общими являются:

  • Топливный бак;
  • Датчик уровня топлива;
  • Фильтры очистки топлива — грубой и тонкой;
  • Топливные трубопроводы;
  • Впускной коллектор;
  • Воздушные патрубки;
  • Воздушный фильтр.

В обеих системах имеются топливные насосы, топливные рампы, форсунки подачи топлива, сам принцип подачи одинаков: топливо из бака с помощью насоса через фильтры подается в топливную рампу, из которой попадает в форсунки. Но если в большинстве бензиновых двигателей внутреннего сгорания форсунки подают его во впускной коллектор мотора автомобиля, то в дизельных оно подается непосредственно в цилиндр, и уже там смешивается с воздухом.

Читайте также  Что означает фаза и ноль в электрике?

Система выхлопа предназначена для отвода отработанных газов из цилиндров двигателя автомобиля. Основные детали, ее составляющие:

  • Выпускной коллектор;
  • Приемная труба глушителя;
  • Резонатор;
  • Глушитель;
  • Выхлопная труба.

В современных двигателях внутреннего сгорания выхлопная конструкция дополнена устройствами нейтрализации вредных выбросов. Она состоит из каталитического нейтрализатора и датчиков, сообщающихся с блоком управления двигателем. Выхлопные газы из выпускного коллектора через приемную трубу попадают в каталитический нейтрализатор, затем через резонатор в глушитель. Далее через выхлопную трубу они выбрасываются в атмосферу.

Источник: https://wikers.ru/articles/ustrojstvo-dvigatelya.html

6 самых надежных двигателей (из тех, что еще продаются)

Двигатель и мотор в чем разница?

14 августа 2019 года

Надежными чаще всего получаются наиболее простые по конструкции двигатели. Средние по рабочему объему, лишенные в большинстве случаев турбонаддува и непосредственного впрыска топлива. Такие моторы можно считать устаревшими, но именно они обладают относительно большим ресурсом.

Моторы Renault семейства К 

K4M

K7M — один из наиболее надежных и неприхотливых моторов с большим ресурсом. Его до сих пор устанавливают на самые простые комплектации автомобилей Renault Logan и Sandero. Небольшой рабочий объем в 1,6 л, восьмиклапанная конструкция и крайне невысокая форсировка — мощность 82–87 л.с.

, обеспечили ему ресурс до 400 000 км и иногда даже более этого. Блок цилиндров чугунный, несклонная к масложору конструкция поршневой группы. Хорошая стойкость к небольшому перегреву.

При использовании качественных расходных материалов, своевременной установке хороших комплектующих типа ремня ГРМ с роликами, насоса охлаждающей жидкости и своевременной регулировке клапанов мотор показывает чудеса надежности.

Двигатель K4M представляет собой более современную, мощную, 16-клапанную версию того же мотора. Его ставят на множество автомобилей Рено — Logan, Sandero, включая Stepway-версии, Megane, Lodgy, Clio, Scenic. До недавних пор его использовали и на автомобиле Lada Largus. Мощность разных модификаций составляет 102–108 л.с. Величина довольно налогоневыгодная.

Мотор требует минимального обслуживания благодаря гидрокомпенсаторам в приводе клапанов. Надежность агрегата почти не уступает маломощной 8-клапанной версии.

Toyota 2AR-EE

2AR-EE

Конечно, времена тойотовских моторов с ресурсом за 800 000 км безвозвратно канули в Лету, но на народных любимцев RAV4 и Camry, а также на минивэн Alphard устанавливают очень неплохие двигатели 2AR-EE. В разных исполнениях мощность этого мотора рабочим объемом 2,5 л составляет 165–180 л.с. Мотор — с алюминиевым блоком цилиндров и залитыми чугунными гильзами. ГРМ — цепной, 16-клапанный с гидрокомпенсаторами.

Самое малое техобслуживание с заменой масла, как у любого тойотовского агрегата — раз в 10 000 км, это очень полезно для моторов, которые эксплуатируются в условиях постоянных пробок. Ресурс мотора превышает 300 000 км. Цепь ГРМ придется обновить на 150 000 км. Некоторые проблемы у этого мотора все же встречаются, но довольно редко. Иногда отмечается повышенный шум на холодную муфт системы изменения фаз газораспределения. Но при прогреве все звуки пропадают.

Лишь насос охлаждающей жидкости требует особого внимания из-за частого возникновения течи.

Toyota 1VD-FTV

1VD-FTV

Второй долговечный мотор того же производителя — дизельный 8-цилиндровый 4.5-литровый агрегат 1VD-FTV, который ставится на большие и мощные внедорожники. Мощность двигателя в зависимости от исполнения может быть от 202 до 286 л.с. Двигатели с двумя турбокомпрессорами устанавливали на Land Cruiser 200 и Lexus LX450d. Еще выпускается упрощенная, дефорсированная версия с одним турбокомпрессором для Land Cruiser 70.

Блок цилиндров — чугунный. Применена схема привода ГРМ почти «вечной» цепью. По четыре клапана на каждый цилиндр работают с гидрокомпенсаторами. Само собой применена система питания Common Rail. Что конечно определяет достаточно высокие требования к качеству дизтоплива. Моторы ранних выпусков отличались повышенным расходом масла, но отнюдь не через поршневую группу, а из-за неудачной конструкции вакуумного насоса, который позже был доработан.

Если не экономить на качественном масле и хорошем топливе, то ресурс такого мотора может превышать 400 000 км.

Honda R20A

R20A

В японском автопроме особняком стоит фирма Honda. Начав производство автомобилей, уже имея большой мотоциклетный опыт, инженеры зачастую применяли нестандартные решения. Чего только стоят моторы девяностых годов, которые при рабочем объеме 1,6 л развивали 160 и более лошадиных сил. Такая форсировка достигалась благодаря весьма высоким оборотам — более 7000.

Мы рассмотрим гораздо более приземленный 2-литровый бензиновый безнаддувный двигатель R20A. Он изготавливается японским концерном с 2006 г. и устанавливается на автомобили Civic, Accord и на кроссовер CR-V. Несмотря на то, что двигатель целиком «алюминиевый» и имеет довольно высокую мощность (до 155 л.с), его ресурс часто превышает 300 000 км.

Это двигатель с одним распределительным валом, который приводит цепь. За регулировку фаз отвечает система i-VTEC. Очень кратко: такая система в нужные моменты «подключает» кулачки распределительного вала с разными профилями. Это обеспечивает оптимальное наполнение цилиндров в широком диапазоне частот вращения и нагрузок.

Правда, система не содержит гидрокомпенсаторов: приходится не реже одного раза в 80 000 км регулировать зазоры в клапанах.

Hyundai/Kia G4FC

G4FC

Возможно, не все со мной согласятся, но я назову еще одним надежным мотором корейский агрегат G4FC. Двигатель выпускался с рабочим объемом 1,4 и 1,6 литра с начала производства Соляриса, то есть с 2010 года. В настоящее время время мотор обрел второй фазовращатель, и продолжает устанавливаться на Hyundai Creta, Solaris и Kia Rio.

Автомобили, как и моторы, разошлись огромным тиражом по всей стране. Все эти машины концерна Hyundai/Kia признаны народными любимцами, и двигатели тоже показывают очень неплохие результаты. Моторы с алюминиевыми блоками цилиндров, цепным приводом распределительных валов и даже с регулировкой зазоров в клапанах заменой стаканчиков показали себя надежными и ресурсными агрегатами.

Цепь ходит не меньше 150 000 км, примерно к этому же пробегу возникает и реальная необходимость регулировки клапанов. Поршневая, при хорошем масле, может прожить до 250 000–300 000 км и даже больше. При использовании топлива невысокого качества возможен преждевременный выход из строя каталитического нейтрализатора. Считается, что частицы керамики от разрушившегося блока попадают в поршневую двигателя, тем самым убивая его.

Тогда предстоит замена каталитического нейтрализатора либо, что нехорошо, удаление.

Именно по отношению к этим двигателям справедливо правило, что большинство автовладельцев просто ездит, и только малая толика обладателей машины с этим корейским мотором недовольна его качеством, причем сами же порой его и губят.

***

Современные моторы по своему ресурсу, к сожалению, далеки от былых «миллионников». Сейчас 300 000–400 000 пробега — уже большая удача. Причина — машины создают теперь не инженеры, которые старались обеспечить максимальный ресурс, а маркетологи, которые всячески лоббируют запрограммированный выход автомобиля из строя, чтобы вынудить потратиться на его ремонт или приобретение нового автомобиля.

Источник: https://www.zr.ru/content/articles/918915-6-samykh-nadezhnykh-dvigatelej/

В чем разница между щеточными и бесщеточными двигателями?

Двигатель и мотор в чем разница?

06.Ноя.2019

Разбираемся, в чем принципиальная разница в двигателях WORX, рассматриваем их плюсы и минусы

Все чаще на просторах интернет-магазинов можно найти инструменты с двумя типами двигателей. Инструменты и садовая техника WORX также не отстают от современных трендов при производстве техники, так что на нашем сайте вы тоже можете найти специальную характеристику двигателя — щеточный или бесщеточный. Так что же это за характеристика, на что она влияет и в чем принципиальные отличия инструментов с тем или иным двигателем? Давайте разбираться.

Устройство и принцип действия щеточного двигателя

Щеточный двигатель по-другому еще называется коллекторным. Состоит двигатель из нескольких важных частей.

Ротор — по-другому, якорь. Как раз он вращается внутри и преобразует электрическую энергию в механическую. Якорь обмотан медной проволокой (обмоткой) с разных сторон ротора. За счет прохождения тока через проволоку создается магнитное поле, которое в свою очередь и создает вращение элемента.

На обмотке в бесщеточном двигателе установлен коммутатор, который используется для переключения с одной обмотки на другую, что позволяет менять направление вращения ротора. Этот коммутатор и есть коллектор, от которого взял свое название двигатель.

Чтобы напряжение передалось на обмотки, а ток прошел через коллектор в двигатель устанавливаются специальные щетки. Щетки обычно состоят из графита; они всегда контактируют с коммутатором и обеспечивают подачу энергии к катушкам с обмоткой. Есть две щетки, и каждая из них подключается к противоположному полюсу батареи. Это гарантирует, что при вращении ротора ток, протекающий к катушкам, постоянно меняет направление. Это приводит к необходимому изменению магнитного поля, которое позволяет ротору продолжать вращаться.

Все вышеописанные элементы установлены в статор. Статор — неподвижных элемент двигателя, в котором могут быть либо еще одна катушка с проволокой, либо постоянный магнит. За счет того или другого элемента и создается магнитное поле обратной полярности ротору, из-за чего тот вращается.

Коллекторные двигатели могут работать от переменного напряжения, так как при смене полярности ток в обмотках возбуждения и якоря также меняет направление, в результате чего вращательный момент не меняет своего направления.

Плюсы и минусы щеточного двигателя

Так мы с вами вкратце разобрались с устройством щеточного двигателя. Теперь в чем же его плюсы и минусы?

Плюсы

  1. Первым плюсом инструментов со щеточными двигателями стоит отметить более низкую стоимость в отличие бесщеточных. Это связано с технологиями производства и более бюджетными материалами.
  2. Вторым плюсом специалисты отмечают упрощенную конструкцию двигателя, что влияет на стоимость ремонта. Проще поменять щетки, чем весь мотор в целом.
  3. Также к плюсам можно отнести относительно малый вес и размер инструментов.

Минусы

  1. На высоких оборотах увеличивается трение щёток. Отсюда вытекает проблема их быстрого износа. Помимо износа самих щеток, в процессе работы они стираются. Стертый графит может засорить коллектор и привести в полную негодность инструмент.
  2. Также к минусам можно отнести более низкую мощность щеточных инструментов, в отличие от бесщеточных моделей. Это связано с тем, что щеточные двигатели физически не могут выдавать мощность выше 3 000 об./мин. Но такой мощности вполне достаточно для домашнего обихода.

  3. Еще одним минусом щеточных двигателей мы можем отметить наличие искрения во время работ. Обратите внимание, что при запуске инструмента щетки трутся о коллектор и создают видимые искры. Это значит, что работать щеточными инструментами нужно более аккуратно — убирать на расстояние все возможные легковоспламеняющиеся вещества и предметы, а также периодически делать перерывы в работе, во избежание перегрева двигателя.
  4. Последним минусом отметим не очень высокий КПД инструментов с коллекторным двигателем — всего 60%.

    Это значит, что инструменты несколько хуже справляются с прочными материалами (например, с металлом) и выполняют меньший объем работы за то же время, что бесщеточный инструмент.

Устройство и принцип действия бесщеточного двигателя

Теперь давайте разберем принцип работы бесщеточного двигателя. Как понятно из названия, его принципиальное отличие в отсутствии щеток. Но как же он тогда работает? Как нужная энергия поступает в двигатель?

В устройстве бесщеточного двигателя также присутствует ротор и статор — основные элементы любого мотора. Но при этом отсутствует коллектор, соответственно и двигатель по-другому называется бесколлекторным. Если у щеточного двигателя работа происходит за счет электро-механической смены полярности, то в бесщеточном двигателе все работает благодаря электромагнитной индукции. Также отличается местоположение обмотки — здесь она располагается на статоре, в отличие от предыдущего вида двигателя.

Вместо щеток и коллектора в бесщеточном двигателе установлены датчики Холла и контроллер, который контролирует подачу напряжения на катушки для создания индуктивности, а также положение ротора и скорость его вращения.

Когда плата подает на обмотку ток, создается тоже противоположное магнитное поле, и магниты на роторе начинают вращаться.

Еще одной особенностью бесщеточных двигателей нужно назвать их типы. Двигатели бывают двух типов — синхронный и асинхронный. В синхронном двигателе частота вращений ротора равна частоте вращений магнитного поля — то есть один оборот ротор совершает после одного полного прохождения тока через катушку. А в асинхронном двигателе обратная ситуация — частота вращений ротора меньше, чем частота вращения магнитного поля. То есть ток проходит через катушку быстрее.

Плюсы и минусы бесщеточного двигателя

Если с устройством бесщеточного двигателя мы разобрались, то теперь давайте рассмотрим положительные и отрицательные стороны инструментов с бесщеточными моторами.

Плюсы:

  1. У инструментов с бесщеточным двигателем отсутствуют многие проблемы, которые встречаются у щеточных моделей. Так, первым плюсом специалисты отмечают бо́льшую износостойкость инструментов. Ввиду отсутствия щеток не создается трение внутри двигателя, соответственно нет внутренних загрязнений. Также отсутствие щеток снижает пожароопасность инструмента — при работе нет искрения, а значит можно работать практически в любых условиях.

  2. Вторым плюсом стоит отметить упрощенную регулировку крутящего момента — в отличие от щеточных моделей, у бесколлекторных инструментов достаточно просто нажать соответствующую кнопку на инструменте. Причем регулировка может иметь до 15 уровней и переключаться в одно мгновение.
  3. Одним из ключевых преимуществ бесщеточных моделей нужно отметить экономию расходуемой энергии. Этот пункт особенно актуален для аккумуляторных инструментов.

    Благодаря экономии инструменты работают до 50% дольше, чем модели со щеточным двигателем. Также КПД бесколлекторных инструментов намного выше — инструмент выполняет 90% поставленных задач, против 60% у коллекторных моделей. Это значит, что бесщеточными инструментами можно работать практически с любым материалом без потери мощности.

  4. Помимо вышеуказанных преимуществ инструментов с бесщеточным двигателем, они еще могут разгоняться до максимальных показателей и имеют быстрый запуск сразу с больших скоростей, чем не могут похвастаться щеточные инструменты.

Минусы:

Но не бывает все настолько радужно. Даже у инструментов с бесщеточными двигателями есть и свои недостатки. Так сказать, ложка дегтя в бочке меда.

  1. К минусам, в первую очередь стоит отнести стоимость инструментов. Техника с бесщеточным мотором в цене дороже, чем упрощенные модели со щеточным двигателем.
  2. Вторым недостатком бесколлекторных инструментов может быть сложное и дорогое техническое обслуживание. Бесщеточный двигатель — технологичное устройство, для работы с которым нужны знания в микроэлектронике. К счастью, в сотрудники наших сервисных центров знают и умеют обслуживать бесколлекторные двигатели.

Итоги сравнения щеточного и бесщеточного двигателей

Если сравнивать инструменты с разными видами двигателей, то можно смело сказать, что техника с бесщеточным двигателем надежнее и мощнее. Но нужно учитывать тот факт, что ориентирована такая техника больше на профессиональные работы. В быту же и инструменты со щеточным двигателем отлично справятся со своими задачами. Потому перед покупкой инструмента заранее определите цели, для которых вы будете использовать инструменты.

В ассортименте компании WORX есть инструменты и со щеточными и с бесщеточными двигателями. Чтобы определить какой именно тип двигателя установлен в инструменте, обратите внимание на иллюстрацию в карточке товара — в бесщеточных моделях есть специальная пометка «BRUSHLESS MOTOR».

Источник: https://worx.tools-russia.ru/blog/v-chem-raznitsa-mezhdu-shchetochnymi-i-besshchetochnymi-dvigatelyami/