Единица количества электричества в системе си

Содержание

В чём измеряется электричество? что такое ватт? разница между понятием киловатт и киловатт-час

Единица количества электричества в системе си

Международная система единиц подскажет любому человеку, в чём измеряется электроэнергия. Такая информация нужна для того, чтобы правильно и безопасно использовать в домашних условиях электрические бытовые приборы.

Единицы измерения напряжения

Напряжение измеряется в вольтах. Чтобы снабдить электроэнергией частные дома используется однофазная сеть с напряжением 220 Вольт.

Но, существует также и трёхфазная сеть, для которой напряжение равно 380 Вольт. В 1000 Вольтах состоит 1 киловольт. Согласно этому показателю, напряжение 220 и 380 Вольт равно 0,22 и 0,4 киловольт.

Измерение силы тока

Сила тока представляет собой потребляемую нагрузку, которая возникает во время работы бытовых приборов или оборудования. Её измеряют в амперах.

Измерение сопротивления

Сопротивление является важным показателем, который показывает, с каким противодействием материалу проходит электроток. При замере сопротивления специалист сможет сказать, рабочий ли электрический прибор или же он вышел из строя. Сопротивление измеряется в Омах.

Человеческое тело имеет сопротивление от двух до десяти килоОм.

Для оценки сопротивляемости материалов, чтобы в дальнейшем их использовать для производства электротехнических продуктов используется показатель удельного сопротивления проводника. Такой показатель зависит от площади поперечного сечения и длины проводника.

Измерение мощности

Количество электроэнергии, которую потребляют приборы за определённую единицу времени, называют мощностью. Она измеряется в Ваттах, киловаттах, мегаваттах, гигаваттах.

Измерение электроэнергии по счётчику

Для определения потребления электроэнергии в квартире или доме используют такое измерение как 1 киловатт за 60 минут. Когда проводится запись потребления электричества важно мощность умножить на время, чтобы правильно измерить электроэнергию.

Теперь вам известно, в чём измеряется электричество. Теперь без труда сможете определить мощность прибора и какое напряжение в розетке, чтобы не вывести его из строя. Благодаря описанным показателям можно избежать серьёзных и опасных ошибок в использовании электрических приборов.

Ватт (обозначение: Вт, W) — в системеСИ единица измерениямощности.

Для расчётов, связанных с мощностью, не всегда удобно использовать ватт сам по себе. Иногда, когда измеряемые величины очень большие или очень маленькие, гораздо удобнее пользоваться единицей измерения со стандартными приставками, что позволяет избежать постоянных вычислений порядка значения. Так, при проектировании и расчётерадаров ирадиоприёмников чаще всего используют пВт или нВт, длямедицинских приборов, таких какЭЭГ иЭКГ, используют мкВт. В производстве электричества, а также при проектировании железнодорожныхлокомотивов, пользуются мегаваттами (МВт) и гигаваттами (ГВт).

Из-за схожих названий, киловатт и киловатт-час часто путают в повседневном употреблении, особенно когда это относится к электроприборам. Однако эти две единицы измерения относятся к разным физическим величинам. В ваттах и, следовательно, киловаттах измеряется мощность, то есть количество энергии, потребляемое прибором за единицу времени. Ватт-час и киловатт-час являются единицами измерения энергии, то есть ими определяется не характеристика прибора, а количество работы, выполненной этим прибором.

Эти две величины связаны следующим образом. Если лампочка мощностью в 100 Вт работала на протяжении 1 часа, её работа потребовала 100 Вт·ч энергии, или 0,1 кВт·ч. 40-ваттная лампочка потребит такое же количество энергии за 2,5 часа. Мощность электростанции измеряется в мегаваттах, но количество проданной электроэнергии будет измеряться в киловатт-часах (мегаватт-часах).

Следовательно Килова́тт-час (кВт·ч) — внесистемнаяединица измеренияработы или количества произведеннойэнергии. Используется преимущественно для измерения потребленияэлектроэнергии в быту,народном хозяйстве и для измерения выработки электроэнергии вэлектроэнергетике.

Интересные факты

С помощью 1 кВт·ч можно добыть 75кгугля, 35кгнефти, испечь 88 буханокхлеба, выткать 10метровситца, вспахать 2,5соткиземли

Вольт(часто обозначается просто V) — этовеличина напряжения, которое толкаетток по цепи. В Европе ток, снабжающийдомашние строения, обычно имеет напряжениев 240 вольт, хотя напряжение можетварьировать до 14 вольт выше или нижеэтой величины.

Ампер(амп. или А, для сокращения) — это величина,которая используется для измерениясилы тока, т.е. количества электрическихзаряженных частиц, называемых электронами,которые проходят через данную точкуцепи каждую секунду. Биллионы электроновнеобходимы, чтобы получить один ампер.Величина, выраженная в амперах,определяется частично напряжением ичастично сопротивлением.

Ом— величина, служащая для измерениясопротивления. Она названа в честьнемецкого физика 19 века Георга СимонаОма, который установил закон, гласящий,что сила тока, проходящего черезпроводник, обратно пропорциональнасопротивлению. Этот закон можно выразитьуравнением: Вольты/Омы = Амперы.Следовательно, если вам известны двеиз названных величин, вы можете вычислитьи третью.

Ватт(W) — это величина энергии, показывающая,какое количество тока в приборепотребляется в любой момент. Соотношениемежду вольтами, амперами и ваттамивыражено другим уравнением, котороепоможет вам сделать любые расчеты. Онивам могут понадобиться для вычисленийв данной книге:

Вольтых Амперы = Ватты

Принятопользоваться киловаттом(kW)как единицей энергии для крупныхвычислений. Один киловатт равен однойтысяче ваттов.

Киловатт-час— это величина для измерения полногоколичества потребляемой энергии. Например, если вы из расходуете 1 kWэнергии за 1 час, это будет отражено насчетчике, и это значение израсходованнойэлектроэнергии будет включено в вашукнигу расчета за электричество.

5 Единицы измерения тепловой энергии

Значение потребленной тепловой энергии(количестватеплоты)может выводиться измерения – Гкал,ГДж, МВтч, кВтч. тепловая энергия может передаватьсяпотребителю с помощью двух видовтеплоносителей: горячая вода или водянойпар.

Тепловаяэнергия может быть измерена в виде:

теплоты(количество теплоты), которая являетсяхарактеристикой процесса теплообменаи определяется количеством энергии,получаемым (отдаваемым) телом в процессетеплообмена; в международной системеединиц (СИ) измеряется в джоулях (Дж),устаревшая единица — калория (1 кал =4,18 Дж)).

энтальпиитеплоносителя,которая является термодинамическимпотенциалом (или функцией состояния) иопределяется массой, температурой идавлением теплоносителя, в международнойсистеме единиц (СИ) измеряется в калориях

Энтальпиютеплоносителя, используют в качествемеры (количественной характеристики)тепловой энергии. Технологическиеособенности тепловой энергии предопределяютсвоеобразие его отпуска и приемки и,как следствие, порядок учета тепловойэнергии, который зависит, во-первых, отвида теплоносителя, с помощью которогопередается тепловая энергия; во-вторых,от системы теплоснабжения, подразделяющейсяна открытые водяные (или паровые) изакрытые.

Измерениетепловой энергии и ее учет не являютсятождественными понятиями, посколькуизмерениеесть нахождение значения физическойвеличины опытным путем при помощисредств измерения, а учеттепловой энергии — использованиерезультатов измерения.

Термин электроэнергия (электрическая энергия, электричество) является физическим и широко распространенным термином. В быту и промышленности он означает процесс производства (выработки), передачи и распределения электроэнергии, которая может быть получена 2 способами:

  • от энергопоставляющей компании;
  • с помощью специальных устройств, называемых генераторами.

Единицей измерения потребления электроэнергии является кВт-час. Электричество обладает рядом положительных свойств и благодаря им она широко применяется во всех отраслях нашего хозяйства и, конечно, в быту. К ним относят:

  1. простоту выработки;
  2. возможность передачи на огромные расстояния;
  3. способность преобразовываться в другие виды энергии;
  4. легко и просто распределяться между разными потребителями.

В настоящее время тяжело представить производство, сельское хозяйство и быт людей без использования электричества. С его помощью освещаются здания, помещения и территории, работает различная техника, оборудование и устройства, передвигается электротранспорт, обогреваются дома и производственные площади, осуществляется связь и многое другое.

Генерация (преобразование различных видов энергии в электрическую) электроэнергии происходит с помощью тепло-, гидро-, ядерной и альтернативной энергетики. Вырабатывается электроэнергия на специальных электростанциях, функционирование и принцип действия которых определяется их названием.

Активная и реактивная электроэнергия

Передача электроэнергии осуществляется по линиям воздушным или кабельным. Такие линии называют электрическими сетями. Расчет потребляемой электроэнергии с абонентами производится с учетом полной мощности тока, проходящего через электрическую цепь. Затраты полной мощности делят на 2 показателя энергии:

Активная энергия, которая является составляющей выработанной полной мощности (измеряется в кВ·А), совершает полезную работу и у большинства электроприборов в расчетах она совпадает с ней. Например, если в паспорте на какое-то устройство (утюг, электропечь, обогреватель и т.д.) указана активная мощность в кВт, то и полная мощность будет такой же, только уже в кВ·А.

В электрических цепях с реактивными элементами (емкостной или индуктивной нагрузкой) часть полной мощности расходуется не на совершение полезной роботы. Это и будет реактивная электроэнергия. Такое понятие характерно для цепей переменного тока. Здесь присутствует такое явление, как несоответствие фазы напряжения фазе тока. Происходит или ее опережение (при емкостной нагрузке) или отставание (при индуктивной нагрузке). Потери происходят из-за нагревания.

Многие бытовые и промышленные приборы и оборудование имеют реактивную составляющую (электродвигатели, переносной электроинструмент, бытовая техника и т.д.). Тогда при расчете за потребленную электроэнергию вводят поправочный коэффициент мощности. Обозначается он как cos fi и его величина лежит обычно в пределах от 0,6 до 0,9 (указывается в паспортных данных на конкретное электроустройство).

Например, если в паспорте переносного инструмента указана мощность в 0,8 кВт и значение cos = 0,8, то в этом случае полная потребляемая мощность составит — 1 кВт(0,8/0,8). Считается негативным явлением и при уменьшении показателя cos снижается полезная мощность.

Обратите внимание! При отсутствии или потере паспорта на конкретное электроустройство для вычисления полной мощности применяют коэффициент cos = 0,7.

Чем выше значение cos , тем меньше потери активной электроэнергии и, конечно, такое электричество будет стоить дешевле. Для повышения этого коэффициента используются различные компенсирующие устройства. Это могут быть генераторы опережающего тока, батареи конденсаторов и др. устройства.

Помимо передачи по проводникам существует еще беспроводная передача электроэнергии. В данный момент существует технология беспроводной зарядки мобильных телефонов и некоторых бытовых устройств, электромобилей и т.п. Они имеют ограничения по дальности и малую эффективность передачи энергии, поэтому говорить об их широком применении не приходится.

Источник: https://stroyew.ru/what-is-the-measurement-of-electricity-what-is-watt.html

Физические величины и единицы их измерения

Единица количества электричества в системе си

Физическая величина — это это такая физическая величина, которой по соглашению присвоено числовое значение, равное единице.

В таблицах приведены основные и производные физические величины и их единицы, принятые в Международной системе единиц (СИ).

Основные величины

Величина Символ Единица СИ Описание
Длина l метр (м) Протяжённость объекта в одном измерении.
Вес m килограмм (кг) Величина, определяющая инерционные и гравитационные свойства тел.
Время t секунда (с) Продолжительность события.
Сила электрического тока I ампер (А) Протекающий в единицу времени заряд.
Термодинамическаятемпература T кельвин (К) Средняя кинетическая энергия частиц объекта.
Сила света Iv кандела (кд) Количество световой энергии, излучаемой в заданном направлении в единицу времени.
Количество вещества ν моль (моль) Количество частиц, отнесенное к количеству атомов в 0,012 кг12C

Производные величины

Величина Символ Единица СИ Описание
Площадь S м2 Протяженность объекта в двух измерениях.
Объём V м3 Протяжённость объекта в трёх измерениях.
Скорость v м/с Быстрота изменения координат тела.
Ускорение a м/с² Быстрота изменения скорости объекта.
Импульс p кг·м/с Произведение массы и скорости тела.
Сила F кг·м/с2 (ньютон, Н) Действующая на объект внешняя причина ускорения.
Механическая работа A кг·м2/с2 (джоуль, Дж) Скалярное произведение силы и перемещения.
Энергия E кг·м2/с2 (джоуль, Дж) Способность тела или системы совершать работу.
Мощность P кг·м2/с3 (ватт, Вт) Скорость изменения энергии.
Давление p кг/(м·с2) (паскаль, Па) Сила, приходящаяся на единицу площади.
Плотность ρ кг/м3 Масса на единицу объёма.
Поверхностная плотность ρA кг/м2 Масса на единицу площади.
Линейная плотность ρl кг/м Масса на единицу длины.
Количество теплоты Q кг·м2/с2 (джоуль, Дж) Энергия, передаваемая от одного тела к другому немеханическим путём
Электрический заряд q А·с (кулон, Кл)
Напряжение U м2·кг/(с3·А) (вольт, В) Изменение потенциальной энергии, приходящееся на единицу заряда.
Электрическое сопротивление R м2·кг/(с3·А2) (ом, Ом) сопротивление объекта прохождению электрического тока
Магнитный поток Φ кг/(с2·А) (вебер, Вб) Величина, учитывающая интенсивность магнитного поля и занимаемую им область.
Частота ν с−1 (герц, Гц) Число повторений события за единицу времени.
Угол α радиан (рад) Величина изменения направления.
Угловая скорость ω с−1 (радиан в секунду) Скорость изменения угла.
Угловое ускорение ε с−2 (радиан на секунду в квадрате) Быстрота изменения угловой скорости
Момент инерции I кг·м2 Мера инертности объекта при вращении.
Момент импульса L кг·м2/c Мера вращения объекта.
Момент силы M кг·м2/с2 Произведение силы на длину перпендикуляра, опущенного из точки на линию действия силы.
Телесный угол Ω стерадиан (ср)
Читайте также  История развития электричества в России

Смотри также:

Источник: https://bingoschool.ru/blog/72/

Киловатт как единица измерения мощности: обозначение и аббревиатура, правильное написание и отличие от кВтч

Единица количества электричества в системе си

Электрический ток необходим человечеству. Он существенно облегчает жизнь и подчиняется определенным физическим законам. У его характеристик есть единицы измерения. Кроме того, некоторые из них используются для учета расхода электроэнергии. Киловатт — производная единица измерения мощности электрической энергии.

Общие сведения

Название единицы измерения мощности электрического тока произошло от фамилии шотландского инженера-изобретателя Джеймса Уатта (1736−1819 гг.), который известен всему миру. Он изобрел паровую машину. Мощность электрического тока измеряется в ваттах (Вт).

Каждый электрический прибор обладает определенной мощностью и потребляет какое-то количество электрической энергии. Ее величина измеряется в ваттах, а для мощных потребителей — в киловаттах. Однако некоторые люди не понимают, что киловатт и киловатт-час являются двумя различными единицами измерения. В этом случае нужно рассмотреть физический смысл основных физических величин, определяющих их: силу тока, напряжение (разность потенциалов), сопротивление (электропроводимость), время работы электрооборудования.

Сила тока

Сила тока — количество электрического заряда, проходящего через проводник за единицу времени. Обозначается величина литерой «I» и измеряется в амперах. Она находится расчетным методом или измеряется при помощи электронно-измерительного прибора, который называется амперметром. Он подключается последовательно к нагрузке. Физический смысл силы тока в 1 А следующий: прохождение количества электрического заряда Qз, равное 1 кулону, через площадь поперечного сечения за 1 секунду. 1 Кл примерно равен 6,241*10 18 отрицательно заряженных частиц (электронов). Формула зависимости силы тока от Qз и времени (t) следующая: I = Qз / t.

Производные единицы измерения: 1 мА (0,001 А) и 1 кА (1000 А). Для удобства расчетов применяются сокращенные названия или аббревиатуры. Ток классифицируется на постоянный и переменный. Постоянный ток не изменяет направление протекания через проводник, но его амплитуда и величина могут меняться. Переменный ток изменяет направление и амплитуду по определенному закону. Его основной характеристикой является частота.

Согласно закону, происходит разделение на синусоидальный и несинусоидальный виды. В первом случае графиком является синусоида, которая зависит от амплитудного значения (Iмакс) и угловой частоты (w). Закон изменения тока с течением времени (t) записывается таким образом: i = Iмакс * sin (w * t). Параметр угловой частоты зависит от частоты тока (f): w = 2 * Пи * f. В этом соотношении величина Пи является значением, приблизительно равным 3,141592653589793238462643.

К току, изменяемому по несинусоидальному закону, относятся любые законы, в которых отсутствует функция синуса (sin). Очень часто в проектировании преобразователей можно встретить ток трапецеидальной и прямоугольной форм. Определить закон изменения электротока можно с помощью осциллографа, дающего его графическое представление. Необходимо учитывать, что ток является векторной величиной, поскольку имеет направление.

Разность потенциалов

Любое вещество состоит из атомов. Каждый атом обладает нейтральным зарядом и содержит элементарные или субатомные частицы: протоны, электроны и нейтроны. Суммарный положительный заряд протонов (Qp) и отрицательный заряд всех электронов (Qe) компенсируют друг друга (Qp = Qe). При воздействии на вещество внешних сил возможны случаи «захвата» атомом другого электрона, находящегося в составе другого атома. В результате чего атом, «захвативший» «чужой электрон», обладает отрицательным зарядом, поскольку в нем количество электронов преобладает над численным показателем числа протонов (Qe>Qp).

Атом, «потерявший» отрицательно заряженную субатомную частицу, называется положительным ионом, поскольку он обладает положительным зарядом (Qp>Qe). Пытаясь восстановить «потерю», он притягивает к себе отрицательную элементарную частицу соседнего атома. Физический процесс обмена частицами продолжается до тех пор, пока значение внешней силы не будет стремиться к 0 (она будет недостаточной для «вырывания» электрона).

При потере или притяжении частицы образуется электромагнитное поле. Его составляющая зависит от заряда иона и бывает положительной или отрицательной. Разность между составляющими разноименных зарядов называется разностью потенциалов или напряжением. Чем больше разность, тем больше величина напряжения. Оно измеряется в вольтах (В, V) и обозначается буквой U. Замерять его значение можно с помощью вольтметра или осциллографа.

Вольтметр подключается параллельно к участку, на котором следует произвести измерение. Кроме того, U рассчитывается по формулам. Электрическое напряжение — работа электромагнитного поля, выполняемая при перемещении точечного заряда из одной точки в другую. Напряжение, равное 1 В — разность потенциалов между двумя точечными положительным и отрицательным зарядами в 1 Кл, на перемещение которых затрачивается энергия электромагнитного поля в 1 Дж. Производными единицами являются следующие: 1 kV = 1000 V, 1 MV = 1000000 V, 1 mV = 0,001 V.

Электрическая проводимость материала

Электрическое сопротивление зависит от электронной конфигурации вещества. Информацию о ней можно получить из периодической таблицы Д. И. Менделеева. По электронной конфигурации вещества можно классифицировать на следующие типы:

  1. Проводники.
  2. Полупроводники.
  3. Диэлектрики (изоляторы).

К проводникам относятся все металлы, электролитические растворы и ионизированные газы. Высокая проводимость обусловлена наличием свободных носителей заряда. В металлах их роль выполняют свободные электроны. Носителями заряда в электролитических растворах являются анионы и катионы. Первые обладают положительным, а вторые — отрицательным зарядами. Во время протекания электротока через раствор (электролиз) анионы притягиваются отрицательно заряженным катодом, а катионы — анодом, обладающим положительным зарядом. В ионизированном газе носителями заряда являются свободные электроны и положительно заряженные ионы.

Взаимодействие атомов между собой происходит при росте температуры. Происходит разрушение кристаллической решетки проводника, вследствие которого появляются дополнительные свободные электроны. Заряженные частицы, протекающие по проводнику, взаимодействуют с ними и замедляют свое движение.

Если электромагнитное поле действует постоянно, то частицы снова возобновляют свое движение. Они снова взаимодействуют с узлами кристаллической решетки. Этот процесс называется электрической проводимостью или сопротивлением вещества. При повышении температуры его величина возрастает.

К полупроводникам относятся вещества, проводящие электроток только при определенных условиях. При внешнем воздействии происходит уменьшение кулоновской силы притяжения субатомных частиц ядром. Электрон «отрывается» и становится свободным, а на его месте образуется дырка. В результате этого происходит образование положительного электромагнитного поля, которое притягивает соседний электрон, а на его месте образуется дырка. Процесс повторяется, и, в результате этого происходит движение электронов и дырок. Величина электропроводимости материала зависит не только от температуры, но и от других показателей:

  1. Геометрических параметров.
  2. Тип материала.
  3. Параметры электротока (напряжение, сила и тип тока).

Геометрическими параметрами проводника или полупроводника являются следующие: длина и площадь поперечного сечения. Некоторые вещества вообще не проводят электричество, они называются изоляторами или диэлектриками. В них вообще отсутствуют свободные носители заряда. Принятое обозначение сопротивления литерой «R» и измерение в Омах (сокращение — Ом), а также в таких производных единицах: 1 кОм = 1000 Ом, 1 МОм = 1000 кОм = 1000000 Ом. Измеряется при помощи омметра или вычисляется расчетным методом.

Мощность электричества

Количество работы, совершаемой электрическим током за единицу времени, называется мощностью. Она преобразуется в различные виды энергий: механическую, тепловую и т. д. В цепях с постоянным и переменным токами она вычисляется различными способами. В большинстве случаев ее рассчитывать нет необходимости, поскольку она указывается на электрооборудовании (на корпусе и в документации). Расчет необходим только при проектировании устройств.

Основные соотношения

В цепи постоянного тока формула мощности записывается таким образом: P = I * U. Существуют и другие соотношения, получаемые из закона Ома (I = U / R):

  1. Для участка цепи: P = sqr (I) * R = sqr (U) / R.
  2. Для полной цепи (с учетом ЭДС — e) равенство записывается следующим образом: P = I * e = I * e — sqr (I) * Rвн = I * (e — (I * Rвн)).
  3. P = I * (e + (I * Rвн)).

Во втором случае формулу нужно применять при условии, что в цепи присутствует электрический двигатель или выполняется зарядка аккумулятора, т. е. происходит потребление электроэнергии. При наличии в электроцепи генератора или гальванического элемента, поскольку происходит отдача энергии, следует применять последнюю формулу. Эти соотношения невозможно применять для цепей, которые потребляют переменный ток. Основная причина — его характеристики, которые меняются с течением времени по определенному закону.

В физике существуют три вида мощностей, которые зависят от элементов: активная (резистор), реактивная (емкость и индуктивность) и полная. Активная мощность вычисляется при помощи следующей формулы: Pа = I * U * cos (a). В соотношении учитываются значения U и I, которые являются среднеквадратичными, а также косинус угла сдвига фаз между ними. Реактивная мощность находится аналогично, только вместо косинуса следует использовать синус: Qр = I * U * sin (a). При индуктивной нагрузке в цепи значение Qp>0, а при емкостной Qp

Источник: https://rusenergetics.ru/praktika/kilovatt

Единицы измерения заряда. Закон Кулона

Единица количества электричества в системе си

В результате долгих наблюдений учеными было установлено, что разноименно заряженные тела притягиваются, а одноименно заряженные наоборот – отталкиваются. Это значит, что между телами возникают силы взаимодействия. Французский физик Ш. Кулон опытным путем исследовал закономерности взаимодействия металлических шаров и установил, что сила взаимодействия между двумя точечными электрическими зарядами будет прямопропорциональна произведению этих зарядов и обратно пропорциональна квадрату расстояния между ними:

Где k – коэффициент пропорциональности, зависящий от выбора единиц измерений физических величин, которые входят в формулу, а также и от среды, в которой находятся электрические заряды q1 и q2. r – расстояние между ними.

Отсюда можем сделать вывод, что закон Кулона будет справедлив только точечных зарядов, то есть для таких тел, размерами которых вполне можно пренебречь по сравнению с расстояниями между ними.

В векторной форме закон Кулона будет иметь вид:

Где q1 и q2 заряды, а r – радиус-вектор их соединяющий; r = |r|.

Силы, которые действуют на заряды, называют центральными. Они направлены по прямой, соединяющей эти заряды, причем сила, действующая со стороны заряда q2 на заряд q1, равна силе, действующей со стороны заряда q1 на заряд q2, и противоположна ей по знаку.

Для измерения электрических величин могут использоваться две системы счисления – система СИ (основная) и иногда могут использовать систему СГС.

В системе СИ одной из главных электрических величин является единица силы тока – ампер (А), то единица электрического заряда будет ее производной (выражается через единицу силы тока). Единицей определения заряда в СИ является кулон. 1 кулон (Кл) – это количество «электричества», проходящего через поперечное сечение проводника за 1 с при токе в 1 А, то есть 1 Кл = 1 А·с.

Коэффициент k в формуле 1а) в СИ принимается равным:

И закон Кулона можно будет записать в так называемой «рационализированной» форме:

Многие уравнения, описывающие магнитные и электрические явления, содержат множитель 4π. Однако, если данный множитель ввести в знаменатель закона Кулона, то он исчезнет из большинства формул магнетизма и электричества, которые очень часто применяют в практических расчетах. Такую форму записи уравнения называют рационализированной.

Читайте также  Как подвести электричество к земельному участку?

Величина ε0 в данной формуле – электрическая постоянная.

Основными единицами системы СГС являются механические единицы СГС (грамм, секунда, сантиметр). Новые основные единицы дополнительно к вышеперечисленным трем в системе СГС не вводятся. Коэффициент k в формуле (1) принимается равным единице и безразмерным. Соответственно закон Кулона в не рационализированной форме будет иметь вид:

В системе СГС силу измеряют в динах: 1 дин = 1 г·см/с2, а расстояние в сантиметрах. Предположим, что q = q1 = q2, тогда из формулы (4) получим:

Если r = 1см, а F = 1 дин, то из этой формулы следует, что в системе СГС за единицу заряда принимают точечный заряд, который (в вакууме) действует на равный ему заряд, удаленный от него на расстояние 1 см, с силой в 1 дин. Такая единица заряда называется абсолютной электростатической единицей количества электричества (заряда) и обозначается СГСq. Ее размерность:

Для вычисления величины ε0, сравним выражения для закона Кулона, записанные в системе СИ и СГС. Два точечных заряда по 1 Кл каждый, которые находятся на расстоянии 1 м друг от друга, будут взаимодействовать с силой (согласно формуле 3):

В СГС данная сила будет равна:

Сила взаимодействия между двумя заряженными частицами зависит от среды, в которой они находятся. Чтобы характеризовать электрические свойства различных, сред было введено понятие относительной диэлектрической проницательности ε.

Значение ε это различная величина для разных веществ – для сегнетоэлектриков ее значение лежит в пределах 200 – 100 000, для кристаллических веществ от 4 до 3000, для стекла от 3 до 20, для полярных жидкостей от 3 до 81, для неполярных жидкостей от 1,8 до 2,3; для газов от 1,0002 до 1,006.

Также от температуры окружающей среды зависит и диэлектрическая проницаемость (относительная).

Если учесть диэлектрическую проницаемость среды, в которую помещены заряды, в СИ закон Кулона примет вид:

Диэлектрическая проницаемость ε – величина безразмерная и она не зависит от выбора единиц измерения и для вакуума считается равной ε = 1. Тогда для вакуума закон Кулона примет вид:

Поделив выражение (6) на (5) получим:

Соответственно относительная диэлектрическая проницаемость ε показывает, во сколько раз сила взаимодействия между точечными зарядами в какой-то среде, которые находятся на расстоянии r друг относительно друга меньше, чем в вакууме, при том же расстоянии.

Для раздела электричества и магнетизма систему СГС иногда называют системой Гаусса. До появления системы СГС действовали системы СГСЭ (СГС электрическая) для измерения электрических величин и СГСМ (СГС магнитная) для измерения магнитных величин. В первой равной единице принималась электрическая постоянная ε0, а второй магнитная постоянная μ0.

В системе СГС формулы электростатики совпадают соответствующими формулами СГСЭ, а формулы магнетизма, при условии, что они содержат только магнитные величины – с соответствующими формулами в СГСМ.

Но если в уравнении одновременно будет содержаться и магнитные, и электрические величины, то данное уравнение, записанное в системе Гаусса, будет отличаться от этого же уравнения, но записанного в системе СГСМ или СГСЭ множителем 1/с или 1/с2. Величина с равна скорости света (с = 3·1010 см/с) называется электродинамической постоянной.

Закон Кулона в системе СГС будет иметь вид:

Пример

На двух абсолютно идентичных каплях масла недостает по одному электрону. Силу ньютоновского притяжения уравновешивает сила кулоновского отталкивания. Нужно определить радиусы капель, если расстояния между ними значительно превышает их линейные размеры.

Решение

Поскольку расстояние между каплями r значительно больше их линейных размеров, то капли можно принять за точечные заряды, и тогда сила кулоновского отталкивания будет равна:

Где е – положительный заряд капли масла, равный заряду электрона.

Силу ньютоновского притяжения можно выразить формулой:

Где m – масса капли, а γ – гравитационная постоянная. Согласно условию задачи Fк = Fн, поэтому:

Масса капли выражена через произведение плотности ρ на объем V, то есть m = ρV, а объем капли радиуса R равен V = (4/3)πR3, откуда получаем:

В данной формуле постоянные π, ε0, γ известны; ε = 1; также известен и заряд электрона е = 1,6·10-19 Кл и плотность масла ρ = 780 кг/м3 (справочные данные). Подставив числовые значения в формулу получим результат: R = 0,363·10-7 м.

Источник: https://elenergi.ru/edinicy-izmereniya-zaryada-zakon-kulona.html

Единицы измерения электрических величин

Единица количества электричества в системе си

Иногда в электрических или электронных схемах и системах необходимо использовать кратные или дольные значения стандартных единиц, когда измеряемые величины очень велики или очень малы.

В следующей таблице приведен список некоторых стандартных электрических единиц измерения, используемых в электрических формулах.

Стандартные электрические единицы

Электрический  параметр Измерительный  блок Символ Описание
Напряжение Вольт U или E Единица электрического потенциала U = I × R
Ток Ампер I или i Единица электрического тока I = U ÷ R
Сопротивление Ом R или Ω Единица сопротивления постоянного токаR = U ÷ I
Проводимость Сименс G или ℧ Взаимное сопротивление G = 1 ÷ R
Емкость Фарад С Единица емкости C = Q ÷ U
Заряд Кулон Q Единица электрического заряда Q = C × U
Самоиндукция Генри L или H Единица индуктивности L  = -L (di / dt)
Мощность Вт W Единица мощности P = U × I   или   2  × R
Полное сопротивление Ом Z Единица сопротивления переменного тока 2  = R 2  + X 2
Частота Герц Гц Единица частоты ƒ = 1 ÷ T

Кратные и дольные значения

Существует огромный диапазон значений, встречающихся в электрической и электронной технике, между максимальным значением и минимальным значением стандартной отдельно взятой единицы измерения. Например, сопротивление может быть ниже 0,01 Ом или выше, чем 1 000 000 Ом. Используя кратные и дольные значения  мы можем избежать написания большого количества нулей до или после десятичной запятой. В приведенной ниже таблице перечислены приставки для кратных и дольных единиц.

Десятичный множитель Приставка Обозначение Пример
русская международная русское международное
101 дека deca да da дал — декалитр
102 гекто hecto г h гПа — гектопаскаль
103 кило kilo к k кН — килоньютон
106 мега mega М M МПа — мегапаскаль
109 гига giga Г G ГГц — гигагерц
1012 тера tera Т T ТВ — теравольт
1015 пета peta П P Пфлопс — петафлопс
1018 экса exa Э E Эм — эксаметр
1021 зетта zetta З Z ЗэВ — зеттаэлектронвольт
1024 иотта yotta И Y Иг — иоттаграмм
10-1 деци deci д d дм — дециметр
10−2 санти centi с c см — сантиметр
10−3 милли milli м m мА — миллиампер
10−6 микро micro мк µ мкф — микрофарад
10−9 нано nano н n нм — нанометр
10−12 пико pico п p пФ — пикофарад
10−15 фемто femto ф f фс — фемтосекунда
10−18 атто atto а a ас — аттосекунда
10−21 зепто zepto з z зКл — зептокулон
10−24 иокто yocto и y иг — иоктограмм

Таким образом, чтобы отображать единицы или кратность единиц для сопротивления, тока или напряжения, мы использовали бы в качестве примера:

  • 1 кВ = 1 киловольт- что равно 1000 вольт.
  • 1 мА = 1 миллиампер,что равно одной тысячной (1/1000) ампера.
  • 47 кОм = 47 килоом- что равно 47000 Ом.
  • 100uF = 100 микрофарад,что равно 100 миллионной (100/1 000 000) фарада.
  • 1 кВт = 1 киловатт, что равно 1000 Вт.
  • 1MHz = 1 мегагерц,что равно миллиону Герц.

Для преобразования из одного префикса в другой необходимо либо умножить, либо разделить на разницу между двумя значениями. Например, для того чтобы преобразовать   МГц в кГц, необходимо значение в кГц умножить на 1000, т.е. 1МГц = 1000кГц.

Точно так же, если нам нужно было преобразовать килогерцы в мегагерцы, нам нужно было бы делить на тысячу. Гораздо проще и быстрее будет перемещать десятичную точку влево или вправо в зависимости от того, нужно ли умножать или делить.

Как и «стандартные» электрические единицы измерения, упомянутые выше, другие единицы также используются в электротехнике для обозначения других значений и величин, таких как:

  • Втч (Ваттчас) количество электрической энергии, потребляемой приемником в течение определенного периода времени. Например, лампочка потребляет сто ватт электроэнергии в течение одного часа. Он обычно используется в виде: Втч(ватт-часов), кВтч (киловатт-час), который составляет 1000 ватт-часов или МВт-ч (мегаватт-час), что составляет 1 000 000 ватт-часов.
  • дБ — децибел – одна десятая единицы измерения Белл (символ Б) и используется для представления усиления как по напряжению, так и по току. Это логарифмическая единица, выраженная в дБ и, обычно, используется для представления отношения входного сигнала к выходному и используется, как правило, в разного рода усилителях.

Например, отношение дБ входного напряжения (Uin) к выходному напряжению (Uout) выражается как 20log 10 (Uout/Uin). Значение в дБ может быть положительным (20 дБ), представляющим коэффициент усиления или отрицательный (-20 дБ), представляющий потерю с единицей, т.е. при Вход = выход, получаем 0 дБ.

  • θ —  фазовый угол — это разность в градусах между формой сигнала напряжения и формой волны, имеющей такое же периодическое время. Это разность во времени или сдвиг во времени и в зависимости от элемента схемы может иметь «ведущее» или «отстающее» значение. Фазовый угол формы волны измеряется в градусах или радианах.
  • ω —  угловая частота – это величина, которая в основном используется в цепях переменного тока для представления скорости изменения фаз и равная 2πƒ. Измеряется в радианах в секунду, рад/с. Один цикл (оборот) составляет 360 градусов или 2π, поэтому половина оборота задается как 180 градусов или π рад.

В следующем учебном пособии по теории схем постоянного тока мы рассмотрим законы Кирхгофа, которые вместе с законом Ома позволяют рассчитать различные напряжения и токи, циркулирующие внутри сложной цепи.

Источник: https://cooliq.ru/14-edinitsy-izmereniya-elektricheskikh-velichin

Система СИ и основные единицы

Единица количества электричества в системе си

Основные единицы: килограмм, метр, секунда, ампер, кельвин, моль и кандела.

В рамках СИ считается, что эти единицы имеют независимую размерность, т. е. ни одна из основных единиц не может быть получена из других.

Таблица 1. Основные единицы СИ

Величина Единица
Наименование Размерность Наименование Обозначение
Длина L метр м
Масса M килограмм кг
Время T секунда с
Электрический ток (сила электрического тока) I ампер А
Термодинамическая температура Ɵ кельвин К
Количество вещества N моль моль
Сила света J кандела кд

Таблица 2. Примеры производных единиц СИ, наименования и обозначения которых образованы с использованием наименований и обозначений основных единиц СИ

Величина Единица
Наименование Размерность Наименование Обозначение
Площадь L2 квадратный метр м2
Объем, вместимость L3 кубический метр м3
Скорость LT –1 метр в секунду м/с
Ускорение LT –2 метр на секунду в квадрате м/с2
Волновое число L–1 метр в минус первой степени м–1
Плотность L–3M килограмм на кубический метр кг/м3
Удельный объем L3M –1 кубический метр на килограмм м3/кг
Плотность электрического тока L–2I ампер на квадратный метр А/м2
Напряженность магнитного поля L–1I ампер на метр А/м
Молярная концентрация компонента L–3N моль на кубический метр моль/м3
Яркость L–2J кандела на квадратный метр кд/м2

Таблица 3. Произвольные единицы СИ, имеющие специальные наименования обозначения

Величина Единица
Наименование Размерность Наименование Обозначение Выражение через основные и производные единицы СИ
Плоский угол 1 радиан рад м·м–1=1
Телесный угол 1 стерадиан ср м2·м–2=1
Частота T -1 герц Гц с–1
Сила LMT -2 ньютон Н м·кг·с–2
Давление L–1MT -2 паскаль Па м–1·кг·с–2
Энергия, работа, количество теплоты L2MT -2 джоуль Дж м2·кг·с–2
Мощность L2MT -3 ватт Вт м2·кг·с–3
Электрический заряд, количество электричества TI кулон Кл с·A
Электрическое напряжение, электрический потенциал, разность электрических потенциалов, электродвижущая сила L2MT -3I -1 вольт В м2·кг·с–3·A–1
Электрическая емкость L–2M -1T 4I2 фарад Ф м–2·кг–1·с4·A2
Электрическое сопротивление L2MT -3I -2 ом Ом м2·кг·с–3·A–2
Электрическая проводимость L–2M -1T 3I2 сименс См м–2·кг–1·с3·A2
Поток магнитной индукции, магнитный поток L2MT -2I -1 вебер Вб м2·кг·с–2·A–1
Плотность магнитного потока, магнитная индукция MT -2I -1 тесла Тл кг·с–2·A–1
Индуктивность, взаимная индукция L2MT -2I -2 генри Гн м2·кг·с–2·A–2
Температура Цельсия Ɵ градус Цельсия °С K
Световой поток J люмен лм кд·ср
Освещенность L–2J люкс лк м–2·кд·ср
Активность нуклида в радиоактивном источнике (активность радионуклида) T -1 беккерель Бк с–1
Поглощенная доза ионизирующего излучения, керма L2T -2 грей Гр м2·с–2
Эквивалентная доза ионизирующего излучения, эффективная доза ионизирующего излучения L2T -2 зиверт Зв м2·с–2
Активность катализатора NT -1 катал кат моль·с–1
Читайте также  Ученые научились трансформировать стресс в электричество

Таблица 4. Примеры произвольных единиц СИ, наименования и обозначения которых образованы с использованием специальных наименований и обозначений, указанных в таблице 3

Величина Единица
Наименование Размерность Наименование Обозначение Выражение через основные и производные единицы СИ
Момент силы L2MT -2 ньютон-метр Н·м м2·кг·с -2
Поверхностное натяжение MT -2 ньютон на метр Н/м кг·с -2
Динамическая вязкость L–1MT -1 паскаль-секунда Па·с м–1·кг·с -1
Пространственная плотность электрического заряда L–3TI кулон на кубический метр Кл/м3 м–3·с·A
Электрическое смещение L–2TI кулон на квадратный метр Кл/м2 м–2·с·A
Напряженность электрического поля LMT -3I -1 вольт на метр В/и м·кг·с–3·A–1
Диэлектрическая проницаемость L–3M -1T 4I 2 фарад на метр Ф/м м–3·кг–1·с4·A2
Магнитная проницаемость LMT -2I -2 генри на метр Гн/м м·кг·с–2·A–2
Удельная энергия L2T -2 джоуль на килограмм Дж/кг м2·с–2
Теплоемкость системы, энтропия системы L2MT -2Ɵ -1 джоуль на кельвин Дж/К м2·кг·с–2·K–1
Удельная теплоемкость, удельная энтропия L2T -2Ɵ -1 джоуль на килограмм-кельвин Дж/(кг·К) м2·с–2K–1
Поверхностная плотность потока энергии MT -3 ватт на квадратный метр Вт/м2 кг·с–3
Теплопроводность LMT -3Ɵ -1 ватт на метр-кельвин Вт/(м·К) м·кг·с–3K–1
Молярная внутренняя энергия L2MT -2N -1 джоуль на моль Дж/моль м2·кг·с–2·моль -1
Молярная энтропия, молярная теплоемкость L2MT -2Ɵ -1N -1 джоуль на моль-кельвин Дж/(моль·К) м2·кг·с–2K–1·моль -1
Экспозиционная доза фотонного излучения (экспозиционная доза гамма- и рентгеновского излучения) M -1TI кулон на килограмм Кл/кг кг–1·с·A
Мощность поглощенной дозы L2T -3 грей в секунду Гр/с м2·с–3
Угловая скорость T -1 радиан в секунду рад/с с–1
Угловое ускорение T -2 радиан на секунду в квадрате рад/с2 с–2
Сила излучения L2MT -3 ватт на стерадиан Вт/ср м2·кг·с–3ср–1
Энергетическая яркость MT -3 ватт на стерадиан-квадратный метр Вт/(ср·м2) кг·с–3ср–1

Литература

ГОСТ 8.417-2002. Единицы величин. — Все таблицы и правила перевода, SI (С)

nagits, 2010

Источник: https://nagits.wordpress.com/2010/03/07/si/

Система СИ. Международная система единиц измерения

Единица количества электричества в системе си

Система СИ была принята XI Генеральной конференцией по мерам и весам, некоторые последующие конференции внесли в СИ ряд изменений.

Система СИ определяет семь основных и производные единицы измерения, а также набор приставок. Установлены стандартные сокращённые обозначения для единиц измерения и правила записи производных единиц.

В России действует ГОСТ 8.417-2002, предписывающий обязательное использование системы СИ. В нем перечислены единицы измерения, приведены их русские и международные названия и установлены правила их применения. По этим правилам в международных документах и на шкалах приборов допускается использовать только международные обозначения.

Во внутренних документах и публикациях можно использовать либо международные либо русские обозначения (но не те и другие одновременно).

Основные единицы системы СИ: килограмм, метр, секунда, ампер, кельвин, моль и кандела. В рамках системы СИ считается, что эти единицы имеют независимую размерность, т. е.

ни одна из основных единиц не может быть получена из других.

Производные единицы получаются из основных с помощью алгебраических действий, таких как умножение и деление. Некоторым из производных единиц в Системе СИ присвоены собственные названия.Приставки можно использовать перед названиями единиц измерения; они означают, что единицу измерения нужно умножить или разделить на определенное целое число, степень числа 10. Например приставка «кило» означает умножение на 1000 (километр = 1000 метров). Приставки СИ называют также десятичными приставками.

История

Система СИ основана на метрической системе мер, которая была создана французскими учеными и впервые была широко внедрена после Великой Французской революции. До введения метрической системы, единицы измерения выбирались случайно и независимо друг от друга. Поэтому пересчет из одной единицы измерения в другую был сложным. К тому же в разных местах применялись разные единицы измерения, иногда с одинаковыми названиями.

Метрическая система должна была стать удобной и единой системой мер и весов.

В 1799 г. были утверждены два эталона — для единицы измерения длины ( метр) и для единицы измерения веса ( килограмм).В 1874 г. была введена система СГС, основанная на трех единицах измерения — сантиметр, грамм и секунда. Были также введены десятичные приставки от микро до мега.В 1889 г. 1-ая Генеральная конференция по мерам и весам приняла систему мер, сходную с СГС, но основанную на метре, килограмме и секунде, т. к. эти единицы были признаны более удобными для практического использования.

В последующем были введены базовые единицы для измерения физических величин в области электричества и оптики.В 1960 г. XI Генеральная конференция по мерам и весам приняла стандарт, который впервые получил название «Международная система единиц (СИ)».В 1971 г. IV Генеральная конференция по мерам и весам внесла изменения в СИ, добавив, в частности, единицу измерения количества вещества ( моль).

В настоящее время система СИ принята в качестве законной системы единиц измерения большинством стран мира и почти всегда используется в области науки (даже в тех странах, которые не приняли СИ).

  Таблица 1. Основные единицы измерения СИ

Физическая величинаЕдиница измеренияСимволдлина

время

масса

электрический ток

термодинамическая температура

количество вещества

метр м
секунда с
килограмм кг
ампер А
кельвин К
моль моль

  Таблица 2. Единицы измерения СИ, образованные из основных единиц

Физическая величинаЕдиница измеренияСимволсила света

площадь

объем

скорость

ускорение

частота волны

плотность

удельный объем

плотность тока

напряженность магнитного поля

удельное количество вещества

яркость

кандела кд
квадратный метр м?
кубический метр м?
метр в секунду м/с
метр в секунду квадратную м/с?
обратный метр 1/м
килограмм на кубический метр кг/м?
кубический метр на килограмм м?/кг
ампер на квадратный метр А/м?
ампер на метр А/м
моль на кубический метр моль/м?
кандела на квадратный метр кд/м?

   Таблица 3. Единицы измерения СИ, образованные из основных и имеющие специальное имя и символическое обозначение

Физическая величинаЕдиница измеренияСимволВыражение через основные единицыугол

объемный угол

частота

сила, вес

давление

работа, энергия

мощность

электрический заряд, количество электричества

напряжение, потенциал, электродвижущая сила

электрическая емкость

электрическое сопротивление

электрическая проводимость

магнитный поток

магнитная индукция

индуктивность

световой поток

освещенность

радиан рад m · m-1 = 1
стерадиан ср m2 · m-2 = 1
герц Гц s-1
ньютон Н m · kg · s-2
паскаль Па m-1 · kg · s-2
джоуль Дж m2 · kg · s-2
ватт Вт m2 · kg · s-3
кулон Кл s · A
вольт В m2 · kg · s-3 · A-1
фарада Ф m-2 · kg-1 · s4 · A2
омм Ом m2 · kg · s-3 · A-2
сименс См m-2 · kg-1 · s3 · A2
вебэр Вб m2 · kg · s-2 · A-1
тесла Тл kg · s-2 · A-1
генри Гн m2 · kg · s-2 · A-2
люмен лм cd
люкс лк m-2 · cd

    Таблица 4. Внесистемные единицы измерения

Физическая величинаЕдиница измеренияСимволугол

температура

цвет

градус град
градус Цельсия ?C
цвет

     Таблица 5. Приставки единиц измерения

КоэффициентПриставкаОбозначение10*2410*21 10*15

10*12

10*9

10*6

10*3

10*2

10*1

10-1

10-2

10-3

10-6

10-9

10-12

10-15

10-18

10-21

10-24

атто а
фемто ф
тэрра Т
гига Г
мега М
кило к
гекто г
дэка д
дэци дц
санти с
милли мл
микро мк
нано н
пико п
фемто ф
атто ат
цэпто ц
окто ок

Источник: https://metrob.ru/html/ed_izmer/Sist_SI.html

Кулон

Единица количества электричества в системе си

Кулон – единица измерения электрического заряда (количества электричества), а также потока электрической индукции (потока электрического смещения) в Международной системе единиц (СИ). Имеет русское обозначение – Кл и международное обозначение – C.

Кулон, как единица измерения

Применение кулона

Представление кулона в других единицах измерения – формулы

Кратные и дольные единицы кулона

Интересные примеры

Другие единицы измерения

Кулон, как единица измерения:

Кулон – единица измерения электрического заряда (количества электричества), а также потока электрической индукции (потока электрического смещения) в Международной системе единиц (СИ), названная в честь в честь французского физика и инженера Шарля Кулона.

Кулон как единица измерения имеет русское обозначение – Кл и международное обозначение – С.

1 кулон определяется как величина заряда, прошедшего через проводник при силе тока 1 ампер за время 1 секунду.

Кл = А · с.

1 Кл = 1 А · с = 1 / 3600 ампер-часа.

Заряд в один кулон очень велик. Если бы два носителя заряда (q1 = q2 = 1 Кл) расположили в вакууме на расстоянии 1 м, то они взаимодействовали бы с силой 9⋅109 H, то есть с силой, с которой гравитация Земли притягивает предмет массой порядка 1 миллиона тонн.

Электрический заряд (количество электричества) представляет собой физическую скалярную величину. Носителями электрического заряда являются электрически заряженные элементарные частицы (электрон, позитрон, протон и пр.). Наименьшей по массе устойчивой в свободном состоянии частицей, имеющей один отрицательный элементарный электрический заряд, является электрон. Электрический заряд электрона неделим и равен -1,6021766208(98)⋅10−19 Кл. Заряд протона также равен заряду электрона, но с противоположным знаком (знаком +) и равен +1,6021766208(98)⋅10−19 Кл.

Таким образом, элементарный электрический заряд (с точностью до знака равный заряду электрона или протона) составляет вышеуказанную величину +/- 1,602176 6208(98)⋅10−19 Кл.  Соответственно электрический заряд 6,24151⋅1018 электронов равен -1 Кл, а электрический заряд 6,24151⋅1018 протонов равен +1 Кл. При этом масса электрона составляет 9,10938356(11)⋅10−31 кг, а протона 1,672 621 923 69(51)⋅10−27 кг.

Наименьшая по массе устойчивая в свободном состоянии античастица с положительным элементарным зарядом – позитрон, имеющая такой же электрический заряд, что и электрон, но со знаком +. Электрический заряд позитрона равен +1,6021766208(98)⋅10−19 Кл. Масса позитрона 9,10938356(11)⋅10−31 кг.

В Международную систему единиц кулон введён решением XI Генеральной конференцией по мерам и весам в 1960 году, одновременно с принятием системы СИ в целом. В соответствии с правилами СИ, касающимися производных единиц, названных по имени учёных, наименование единицы «кулон» пишется со строчной буквы, а её обозначение — с заглавной (Кл). Такое написание обозначения сохраняется и в обозначениях производных единиц, образованных с использованием кулона.

Применение кулона:

В кулонах измеряют электрический заряд (количество электричества), поток электрической индукции (поток электрического смещения).

Представление кулона в других единицах измерения – формулы:

Через основные и производные единицы системы СИ кулон выражается следующим образом:

Кл = А · с

где  Кл – кулон, А – ампер,  с – секунда.

Кратные и дольные единицы кулона:

Кратные и дольные единицы образуются с помощью стандартных приставок СИ.

Кратные Дольные
величина название обозначение величина название обозначение
101 Кл декакулон даКл daC 10−1 Кл децикулон дКл dC
102 Кл гектокулон гКл hC 10−2 Кл сантикулон сКл cC
103 Кл килокулон кКл kC 10−3 Кл милликулон мКл mC
106 Кл мегакулон МКл MC 10−6 Кл микрокулон мкКл µC
109 Кл гигакулон ГКл GC 10−9 Кл нанокулон нКл nC
1012 Кл теракулон ТКл TC 10−12 Кл пикокулон пКл pC
1015 Кл петакулон ПКл PC 10−15 Кл фемтокулон фКл fC
1018 Кл эксакулон ЭКл EC 10−18 Кл аттокулон аКл aC
1021 Кл зеттакулон ЗКл ZC 10−21 Кл зептокулон зКл zC
1024 Кл иоттакулон ИКл YC 10−24 Кл иоктокулон иКл yC

Интересные примеры:

При прохождении одного кулона через вольтаметр, наполненный раствором азотносеребряной соли, выделяется на катоде этого вольтаметра количество серебра, равное 0,001118 г.

При прохождении одного кулона через вольтаметр, наполненный подкисленной водой, выделяется 0,174 см3 гремучего газа (при 0° и 760 мм давления).

Источник: https://ru.wikipedia.org/wiki/Кулон

Примечание: © Фото https://www.pexels.com, https://pixabay.com

Еще технологии…

карта сайта

кулон электрический заряд физика величина формула
закон заряд сила взаимодействия формула виды законов коэффициент закона кулона можно записать в виде взаимодействие зарядов сила

Источник: https://xn--80aaafltebbc3auk2aepkhr3ewjpa.xn--p1ai/kulon/