Содержание
- 1 Обрыв нуля в трехфазной сети — причины и последствия
- 2 Как определить фазу, ноль и заземление самому, подручными средствами?
- 3 Фаза есть нуля нет что делать?
- 3.1 Почему происходит отгорание нуля?
- 3.2 Что происходит при отгорании нуля?
- 3.3 Защита от отгорания нуля
- 3.4 Чем опасен обрыв нулевого провода в электросети?
- 3.5 На стояке подъезда
- 3.6 Внутри жилого помещения
- 3.7 Как определить опасность?
- 3.8 Чем защитить домашнюю электропроводку?
- 3.9 Причины явления
- 3.10 Обрыв нуля в трехфазной и однофазной сети
- 3.11 Что такое обрыв нуля?
- 4 Две фазы в розетке, причины и решение
- 5 Фаза и ноль в электрике — назначение фазного и нулевого провода
- 6 Две фазы в розетке. Как такое может быть?
- 7 Фаза и нуль в электрике: что значит
Обрыв нуля в трехфазной сети — причины и последствия
Обрыв нуля — это аварийный режим работы трехфазной электросети при котором, в результате обрыва (отгорания) нулевого рабочего провода, в случае несимметричной нагрузки, на подключенных к данной сети однофазных электроприемниках возникает напряжение значительно ниже либо наоборот значительно превышающее номинальное напряжение однофазной сети.
Последствия обрыва нуля — это вышедшее из строя электрооборудование и в первую очередь это дорогостоящие электронные приборы, такие как компьютеры, телевизоры, современные стиральные машины и т.д., которые являются наиболее чувствительными к перепадам напряжения сети, и в особенности к его повышению.
Совершенно не важно проживаете вы в частном доме или в квартире, трехфазная у вас сеть или однофазная при обрыве нуля питающей сети и при отсутствии должной защиты вы рискуете стать жертвой подобной аварии.
В данной статье мы разберемся с тем, что происходит при обрыве нуля, откуда в однофазной розетке может появиться 380 Вольт, а так же по каким причинам может произойти обрыв нуля и как от этого защититься.
2. Почему при обрыве нуля повышается напряжение?
Что бы ответить на этот вопрос разберемся с тем как устроена наша электросеть и как в нее подключаются электроприборы.
Есть два основных способа подключения электроприемников — параллельный и последовательный:
На картинке выше представлено параллельное подключение двух лампочек, при таком подключении напряжение на обоих лампочках будет одинаково и равно напряжению сети, вне зависимости от количества лампочек и их мощности, в то время как ток сети (I1) будет равен сумме токов I2 — который проходит через первую лампочку и I3 который проходит через вторую лампочку.
Именно по такой схеме подключается все электрооборудование в квартирах и частных домах.
Рассчитать общий ток при параллельном подключении можно по формуле:
I=U/R
где: U — напряжение сети, Вольт; R — сопротивление сети, Ом.
Из этой формулы видно, что ток в сети обратно пропорционален сопротивлению, т.е. чем выше сопротивление тем ниже ток и наоборот.
Каждый электрический прибор будь то простая лампочка или микроволновая печь имеет свое электрическое сопротивление, причем чем мощнее прибор тем меньше его сопротивление.
Общее сопротивление сети при параллельном подключении определяется по формуле:
- При подключении двух резисторов:
Rсети=(R1*R2)/(R1+R2)
- При подключении трех и более резисторов:
1/Rсети=1/R1+1/R2+1/Rn
где: R1,R2,Rn — сопротивления отдельно взятых электрических приборов включенных в сеть.
Представим, что мы параллельно включили в сеть 2 лампочки: одна лампочка мощностью 75 Ватт сопротивление которой R1= 600 Ом, а вторая — 150 Ватт с сопротивлением R2= 300 Ом, тогда общее сопротивление сети будет равно:
Rсети=(600*300)/(600+300)=200 Ом
А теперь добавим в нашу сеть третью лампочку мощностью 75 Ватт с сопротивлением R3= 600 Ом, тогда:
1/Rсети=1/600+1/300+1/600 ➜ 1/Rсети=0,0017+0,0033+0,0017,
отсюда находим общее сопротивление сети:
Rсети=1/(0,0017+0,0033+0,0017)=149 Ом
Как видно из данного расчета при подключении третьей лампочки общее сопротивление сети уменьшилось.
ВЫВОД №1:Чем больше в сеть параллельно подключено электроприемников тем ниже будет ее общее сопротивление.
При последовательном подключении ток протекающий в цепи имеет одинаковую величину на всем ее протяжении (т.е. через обе лампочки протекает одинаковый ток вне зависимости от их мощности)который рассчитывается по той же формуле, что и при параллельном подключении:
Iсети=Uсети/Rсети
Однако общее сопротивление сети при последовательном подключении определяется как сумма сопротивлений всех подключенных электроприемников:
Rсети= R1+R2+Rn
где: R1*R2*Rn — сопротивления отдельно взятых электрических приборов включенных в сеть.
Напряжение сети при последовательном подключении в нее электроприборов разделяется между этими электроприборами пропорционально их сопротивлению. Рассчитать напряжение на каждом приборе можно по следующей формуле:
Uэлектроприемника = Iсети*Rэлектроприемника
Как видно из этой формулы, напряжение на электроприемнике прямо пропорционально его сопротивлению.
Для наглядности произведем расчет напряжения на двух подключенных последовательно в сеть 220 Вольт лампочках мощностью 75 Ватт (сопротивление одной лампочки R=600 Ом) (рис. 1)
В этом случае общее сопротивление сети будет равно:
Rсети= Rлампочки №1 + Rлампочки №2=600+600=1200 Ом
Ток сети будет равен:
Iсети=Uсети/Rсети=220/1200=0,183А
Тогда напряжение на лампочке будет равно:
Uлампочки = Iсети*Rлампочки=0,183*600=110 Вольт
Так как сопротивление (мощность) обоих лампочек одинаково напряжение сети разделится между ними поровну.
Таким образом выполняется подключение лампочек в гирляндах, например, если взять десятивольтовые лампочки одинаковой мощности то подключив 22 таких лампочки последовательно в сеть 220 Вольт на каждой лампочке будет как раз 10 Вольт (220Вольт/22лампочки=10Вольт на каждую лампочку), однако если перегорит одна лампочка цепь разорвется и вся гирлянда погаснет.
Теперь представим, что мы заменили одну из лампочек на лампочку мощностью 150 Ватт, сопротивление которой соответственно будет Rлампочки №2 =300 Ом (рис. 2)
Тогда общее сопротивление сети будет равно:
Rсети= Rлампочки №1 + Rлампочки №2=600+300=900 Ом
Ток сети будет равен:
Iсети=Uсети/Rсети=220/900=0,2444А
Тогда напряжение на лампочке №1 (75 Ватт) будет равно:
Uлампочки №1 = Iсети*Rлампочки №1=0,2444*600=147 Вольт
А напряжение на лампочке №2 (150 Ватт) составит:
Uлампочки №2 = Iсети*Rлампочки №2=0,2444*300=73 Вольта
То есть менее мощная лампочка будет получать большее напряжение и соответственно ярче гореть.
ВЫВОД №2:При последовательном подключении в сеть электроприборов на менее мощные электроприборы «выделяется» большее напряжение чем на приборы большей мощности.
Ну и наконец разберемся почему при обрыве нуля в вашей розетке может появиться 380 Вольт, для этого представим обычную схему подключения квартир в многоквартирном жилом доме (аналогичным образом подключаются так же и частные жилые дома к линиям электропередач):
На схеме представлено подключение трех квартир, т.к. нагрузка по фазам должна разделяться равномерно все квартиры подключены на разные фазы, при этом во всех трех квартирах общий ноль.
В трехфазной сети напряжение между фазами составляет 380 Вольт, а напряжение между фазой и нулем — 220 Вольт, соответственно при данной схеме в каждой из квартир напряжение сети составляет 220 Вольт и в эту сеть параллельно подключаются электроприборы, ток при этом протекает от фазы к нулю.
Теперь посмотрим что происходит в электросети при обрыве нуля (для большей наглядности и упрощения расчетов представим, что жильцы квартиры №3 уехали в отпуск предусмотрительно отключив все электроприборы в квартире):
На приведенной выше схеме видно, что при обрыве нуля первая и вторая квартиры оказались подключены последовательно в сеть 380 Вольт, ток в этом случае протекает уже не от фазы к нулю, а от фазы к фазе.
Как уже было сказано выше, при последовательном подключении в сеть электроприборов, на менее мощные электроприборы выделяется большее напряжение (вывод №2). Если бы общая мощность включенных в сеть электроприборов в квартире №1 была равна мощности включенных в сеть приборов в квартире №2, то напряжение между квартирами поделилось бы поровну, т.е. по 190 Вольт на квартиру, однако на практике такого как правило не бывает.
В нашем случае у жильцов в квартире №1 в сеть включены только компьютер, телевизор и одна лампочка общей мощностью 475 Ватт в то время как в квартире №2 в сеть включены: стиральная машина, электропечь, и 2 лампочки общей мощностью 3950 Ватт следовательно, т.к. общая мощность квартиры №1 значительно ниже, напряжение в электросети квартиры №1 будет намного выше.
Произведя расчет можно определить, что напряжение в электросети квартиры №2 составит 40 Вольт, при таком напряжении электроприборы в квартире №2 перестанут работать, нити накала в лампочках будут едва раскалены, в то же время напряжение сети в квартире №1 составит 340 Вольт, при таком высоком напряжении электроприборы в квартире №1 начнут выходить из строя, в первую очередь выйдут из строя наиболее чувствительные к перепадам напряжения сети электронные приборы, т.е. телевизор и компьютер, причем после их поломки общая мощность квартиры №1 уменьшится, а напряжение сети при этом соответственно будет увеличиваться пока все включенное в сеть электрооборудование в квартире №1 не»сгорит»:
После выхода из строя последнего электроприбора в квартире №1 электрическая цепь будет разорвана (ток перестанет протекать), при этом напряжение в электросети квартиры №2 станет равным нулю, а замерив напряжение в розетке квартиры №1 мы увидим 380Вольт.
Можно выделить несколько причин обрыва нуля:
1) Некачественное и не своевременное техническое обслуживание электрощитков (либо его полное отсутствие). Данная проблема особенно остро стоит в многоквартирных жилых домах.
Периодическое техническое обслуживание — залог безаварийной работы электрооборудования. К сожалению эксплуатирующие организации (ЖКХ) зачастую пренебрегают этим важным принципом и их электрики заглядывают в этажные электрощитки только после того как случается очередная авария.
Пример отгорания нуля от нулевой шинки в результате плохо зажатого контактного соединения:
2) Несимметричное распределение нагрузки.
Как уже было написано выше, нагрузка по фазам должна распределяться как можно более равномерно (симметрично).
Как видно из приведенных выше схем, при симметричной нагрузке (когда подключенная мощность на всех трех фазах одинакова) токи взаимоуравновешиваются, в результате ток в нулевом проводе отсутствует, однако при несимметричной нагрузке на фазах в нулевом проводнике протекает так называемый ток уравнивания компенсирующий неравномерность нагрузки, причем чем выше данная несимметрия, тем больше величина тока уравнивания и следовательно выше риск отгорания нуля.
3) Старая электропроводка. Если вам не посчастливилось жить в новостройке, то вполне возможно, что ваш дом проектировался лет 30-40 назад, когда нагрузка среднестатистической квартиры представляла собой пару лампочек и одно радио, в наше время в каждой квартире есть множество энергоемкого оборудования такого как СВЧ печи, электрочайники, электрические печи и т.д., но на такие нагрузки старая электропроводка конечно же не рассчитывалась.
Есть два основных способа защиты от обрыва нуля: повторное заземление нулевого проводника и установка реле напряжения:
1) Повторное заземление нуля — такой способ защиты подходит для частных жилых домов заземление которых выполняется по системе TN-C-S, при этом во вводном электрощитке дома к нулевому проводнику подключается контур заземления:
Как видно на схеме, при обрыве (отгорании) нуля, ток уравнивания продолжает протекать к контуру заземления, благодаря чему фазное напряжение сохраняется на уровне 220 Вольт. Подробнее о том как выполнить повторное заземление читайте статью: Заземление в частном доме.
2) Установка реле напряжения — данный способ применяется для защиты от обрыва нуля электросети квартир в многоквартирных жилых домах, а так же для защиты электросети частных жилых домов с заземлением выполненным по системе TT, либо вовсе не имеющих контура заземления.
Реле напряжения — это прибор контролирующий уровень напряжения электросети, в случае повышения или снижения его до недопустимого уровня реле напряжения отключает электросеть до того момента, как напряжение сети не вернется в норму.
Подробнее читайте статью реле напряжения.
Была ли Вам полезна данная статья? Или может быть у Вас остались вопросы
Источник: https://elektroshkola.ru/obshhie-voprosy/obryv-nulya-v-trexfaznoj-seti-prichiny-i-posledstviya/
Как определить фазу, ноль и заземление самому, подручными средствами?
Давайте попробуем разобраться, как в домашних условиях, не обладая сложными специализированными измерительными инструментами и электронными приборами, самому определить где фаза, где ноль, а где земля в проводке.
Из всех известных методов, наиболее простого определения фазы и ноля, мы отобрали самые, по нашему мнению, доступные в реализации и в то же время безопасные. По этой причине, в статье вы не увидите советов — как найти фазу с помощью картошки или же призывов к кратковременному касанию проводов различными частями тела.
На самом деле, вариантов определения фазы, нуля или заземления, например, в розетке, без применения специализированного оборудования не так уж и много, и порой, в зависимости от ваших целей и задач, бывает достаточно лишь знать стандарт цветовой маркировки электрических проводов принятый у нас, чтоб их различить.
Маркировка проводов по цвету
Действительно, самый простой способ определить фазу, ноль и землю у электрического провода, это посмотреть цветовую маркировку и сравнить с принятым стандартом. Каждая жила в современных проводах, применяемых в электропроводке, а также электрооборудовании имеет индивидуальную расцветку. Зная какому цвету жил какая соответствует функция (фаза, ноль или заземление), легко можно выполнять дальнейший монтаж.
Довольно часто, этого вполне достаточно, особенно в случаях, когда установка производится в новостройках или местах с довольно новой электропроводкой, сделанной профессиональными, компетентными электромонтажниками по всем современным правилам и стандартам.
В нашей стране, как и в Европе в целом, действует стандарт IEC 60446 2004 года, который жестко регламентирует цветовую маркировку электрических проводов.
Согласно этому стандарту для квартирной электросети:
Рабочий ноль (нейтраль или ноль) — Синий провод или сине-белый
Защитный ноль (земля или заземление) — желто-зеленый провод
Фаза – Все остальные цвета среди которых – черный, белый, коричневый, красный и т.д.
Теперь, зная стандарт цветовой маркировки проводов, вы сможете без труда определять, какой провод какую функцию выполняет. Это касается большинства случаев, исключение могут составлять провода, подходящие к выключателям, переключателям и т.д., в силу принципиально иной схемы работы этого электрооборудования.
Если же вы не уверены в точном соответствии цветов жил проводов стандарту IEC 60446 2004, у вас старая проводка, вы не исключаете возможность ошибок или даже халатного отношения электромонтажников к своей работе, а может электриками проложены провода другого стандарта и соответственно иной цветовой маркировки, тогда переходим к практическому методу определения фазы и нуля (рабочего и защитного).
ОПРЕДЕЛЕНИЕ ФАЗЫ
Для большего удобства, сперва всегда лучше определять какой из имеющихся проводов фаза. О том, как найти фазу цифровым мультиметром мы уже писали, а как быть если его нет, читайте ниже.
ОПРЕДЕЛЕНИЕ ФАЗЫ ИНДИКАТОРНОЙ ОТВЕРТКОЙ
Самый простой способ обнаружения фазного провода – это поиск с помощью индикаторной отвертки. Этот простейший инструмент должен быть у любого домашнего мастера, занимающегося электрикой в квартире – будь то полный электромонтаж, простая замена ламп или установка светильников, розеток и выключателей.
Принцип работы индикаторной отвертки прост – при касании жалом отвертки проводника под напряжением и одновременном касании контакта, на задней стороне отвертки, пальцем руки — загорается индикаторная лампа в корпусе инструмента, которая и сигнализирует о наличии напряжения. Таким образом легко можно узнать, какой провод фазный.
Принцип действия индикаторной отвертки прост — внутри индикаторной отвертки расположена лампа и сопротивление(резистор), при замыкании цепи (касании нами заднего контакта) лампа загорается. Сопротивление защищает нас от поражения электрическим током, оно снижает ток до минимального, безопасного уровня.
Этот вариант определения фазы своими силами, наиболее предпочтителен и мы рекомендуем пользоваться именно им, тем более что стоимость индикаторной отвертки более чем доступная. Главным недостатком этого способа, является вероятность ошибочного срабатывания, когда индикаторная отвертка, реагируя на наводки, определяет наличие напряжения там, где его нет.
ОПРЕДЕЛЕНИЕ ФАЗЫ, НУЛЯ И ЗАЗЕМЛЕНИЯ КОНТРОЛЬНОЙ ЛАМПОЙ
Еще один способ, которым можно определить фазный, нулевой и провод заземления в современной трехпроводной электрической сети, это использование контрольной лампы. Способ неоднозначный, но действенный, требующий особой осторожности.
Чтоб начать определение, в первую очередь необходимо собрать само устройство контрольной лампы. Самый простой способ использовать патрон, с вкрученной туда лампой, а в клеммах патрона закрепить провода со снятой на концах изоляцией. Если же под рукой нет электрического патрона или нет времени что-то мастерить, можно воспользоваться обычной настольной лампой с электрической вилкой.
Технология определения фазы, нули и земли с помощью контрольной лампы максимально проста – поочередно соединяя провода лампы к проводам требующим определения, каждый с каждым.
Определить фазу и ноль из двух проводов
В случае определения контрольной лампой фазного провода среди двух проводов вы лишь сможете узнать, есть фаза или нет, а какой именно из проводников фазный определить не удастся. Если при соединении проводов контрольной лампы к определяемым жилам она загорится, то значит один из проводов фазный, а второй скорее всего ноль. Если же не загорится, то скорее всего фазы среди них нет, либо нет нуля, чего тоже исключать нельзя.
Таким способом, скорее, удобнее проверять работоспособность проводки и правильность её монтажа. Определять фазу лучше индикаторной отверткой, а вот наличие нуля узнавать так.
Определить фазный провод в таком случае можно подключив один из концов, идущих от контрольной лампы, к заведомо известному нулю (например, к соответствующей клемме в электрощите), тогда при касании вторым концом к фазному проводнику, лампа загорится. Оставшийся провод соответственно ноль.
Найти фазу, ноль и заземление из трех проводов:
В такой трехпроводной системе часто возможно точно определить фазный, нулевой и заземляющий провод контрольной лампой.
Соединяем контакты, идущие от контрольной лампы поочередно к жилам требующего определения кабеля.
Действуем методом исключения:
Находим положение, в котором лампа горит, это будет значить, что один из проводов фаза, а другой ноль.
После чего меняем положение одного из контактов контрольной лампы, далее возможны несколько вариантов:
— Если лампа не загорится (при наличии УЗО или дифференциального автомата защиты проверяемой линии они также могут сработать) значит оставшийся свободным провод – ФАЗА, а проверяемые НОЛЬ и ЗЕМЛЯ.
— Если после смены положения лампа ненадолго вспыхнет, при этом сразу сработает УЗО или диф. автомат (если они есть), значит оставшийся свободным провод – НОЛЬ, а проверяемые это ФАЗА и ЗАЗЕМЛЕНИЕ.
— Если линия не защищена устройством защитного отключения (УЗО) или дифференциальным автоматом, и свет будет гореть в двух положениях. В этом случае узнать какой провод рабочий ноль (нуль), а какой защитный (заземление), можно просто отключив в щите учета и распределения электроэнергии вводной кабель от клеммы заземления. После чего так же проверить контрольной лампой все жилы и, опять же методом исключения, в положении, когда лампа не горит опознать проводник заземления.
Источник: https://RozetkaOnline.ru/poleznie-stati-o-rozetkah-i-vikluchateliah/item/83-kak-opredelit-fazu-nol-i-zazemlenie-samomu-podruchnymi-sredstvami
Фаза есть нуля нет что делать?
Привет, друзья. Сталкивались когда-нибудь с явлением «отгорание нуля»? Если нет, то вы счастливый человек. Но знать об этом, особенно электрикам, будет полезно. Поговорим о том, почему этот таинственный ноль имеет тенденцию отгорать, что происходит при этом и какая бывает защита от отгорания нуля? Для того чтобы понять это, немного вспомним физику.
Нашел в интернете хорошее видео по теме, коротко и ясно, если не любите читать, смотрите ниже. Итак, начнем.
Ноль, для однофазной цепи, это название проводника, который не находиться под высоким потенциалом относительно земли. Фаза, это второй проводник , она имеет высокий потенциал переменного напряжения относительно земли. В России, чаще всего, это 220-230 Вольт. Ноль при этом не проявляет тенденции к отгоранию.
Основная загвоздка — все линии электропередачи, являются трехфазными. Рассмотрим традиционную схему «звезда»:
Здесь и появляется понятие «нулевой проводник».
В трех одинаковых нагрузках, переменный ток каждой фазы сдвинут по фазе на 1/3. В идеале, эти токи компенсируют друг друга. При такой нагрузке, в средней точке, векторная сумма токов равна нулю.
Получается, что через нулевой провод, подключенный к средней точке, ток не течет (он практически не нужен).
Незначительный ток на нулевом проводнике все же возникает. Это происходит, когда нагрузки на фазах не полностью компенсируют друг друга, тоесть разные. Прямое доказательство этому можно увидеть на практике, посмотрите на четырехжильные кабели для трехфазных цепей, нулевая жила вдвое меньшего сечения, чем фазные. Зачем тратить дефицитную медь, если тока в жиле практически нет? Имеется смысл…
При сосредоточенной нагрузке, в трехфазной цепи, ноль тоже не расположен к отгоранию.
Интересное начинается тогда, когда к трехфазной цепи начинают подключать однофазные нагрузки (многоквартирных домах, например). Каждая нагрузка представляет случайно выбранное устройство.
При использовании одной фазы из трехфазной цепи, их стараются распределить по мощности так, чтобы на каждую приходилась примерно одинаковая нагрузка.
Все понимают, что полного равенства при этом не достигнуть. Жители дома будут случайным образом включать, выключать электроприборы, поэтому нагрузка будет постоянно меняться. Полной компенсации токов в средней точке происходить не будет, но ток нулевого проводника обычно не достигает максимального значения, большего току в одной из фаз. Ситуация предсказуемая, отгорание нуля при этом бывает крайне редко.
Почему происходит отгорание нуля?
Сегодня мы регулярно пользуемся большим количеством электрических приборов, большинство из них это импульсные источники питания. Это телевизоры, радиоприемники, компьютеры итд. Характер потребления тока этими приборами сильно отличается от прежних.
В цепи, возникают дополнительные импульсные токи, которые не компенсируются в средней точке. Прибавляем к ним некомпенсированные, вызванные разностью однофазных нагрузок и получаем ток, близкий к самому большому току одной из фаз, или даже превышающий его.
Вот мы и пришли к благоприятным условиям для отгорания нуля. Чаще всего отгорание происходит в слабых местах, где: поврежден провод, занижено сечение кабеля, плохой контакт.
С каждым днем в обиходе появляется все больше электроприборов, соответственно ситуация ухудшается. Поэтому при монтаже электропроводки, необходимо учитывать высокую вероятность отгорания нулевого проводника. Пренебрегать этим не стоит.
Что происходит при отгорании нуля?
В лучшем случае погаснет свет, перестанут работать розетки. О плохом писать не хочется, думаю, понимаете, что перегрузка приводит к нагреву провода, плавке, пробою изоляции итп.
Кроме того, при отгорании нуля, в цепи могут происходить серьезные скачки напряжения. На фазе, где было повышенное потребление, напряжение падает практически до нуля. В то же время, на фазе где потребление было меньше всего, оно вырастает до 380 Вольт. Чувствуете чем пахнет?
Подобное явление может вывести из строя вашу технику!
Что делать, спросите вы? Существует защита.
Защита от отгорания нуля
Для защиты от вышеуказанных инцестов умные люди придумали реле контроля напряжения. Если напряжение выходит за допустимые пределы, реле отключает его, защищая тем самым все подключенные приборы и оборудование.
Напоследок небольшое видео, где наглядно можно увидеть, что происходит при отгорании нуля.
Источник: https://elektrobiz.ru/zametki-elektrika/zashhita-ot-otgoranie-nulya.html
Чем опасен обрыв нулевого провода в электросети?
О последствиях обрыва нуля в трехфазной и однофазной сети должен знать каждый электрик, особенно самоучка. Данное явление может быть очень опасным как для бытовой техники, так и для жизни человека. Чтобы Вы знали, чем опасно повреждение нулевого провода и почему данный режим является аварийным, далее мы подробно рассмотрим неблагоприятные ситуации и советы по их устранению.
На стояке подъезда
Для начала в общих чертах рассмотрим, что собой представляет электросеть городского многоэтажного дома. Источником питания в данном случае является трансформаторная подстанция, от которой протянуты провода к главному распределительному щиту постройки. Напряжение в главном щитке трехфазное, то есть сеть 380 Вольт.
Отсюда уже выводятся группы проводов на каждую квартиру. В самих квартирах сеть уже однофазная – 220 В. Если произойдет обрыв общего нуля на стояке подъезда, это может стать причиной выхода бытовой техники из строя.
Приводит это к неравенству — в трехфазной схеме питания произойдет перекос фаз и вместо симметричной нагрузки образуется несимметричная, проходящая в четырехпроводной цепи.
Простыми словами можно это объяснить так: от главного щитка в подъезде к каждой отдельной квартире подается одинаковое напряжение – 220 В. Если произойдет обрыв нулевого провода, может получиться так, что к одной квартире поступит 300 Вольт, а к другой 170 (как пример). Результат – перенапряжение и «недонапряжение» станет причиной выхода электроприборов из строя. Обычно если происходит повреждение нуля, ломается техника, имеющая двигатель: стиральная машина, холодильник, кондиционер и т.д. Помимо этого может произойти пожар, что еще хуже.
Что собой представляет перекос фаз
Внутри жилого помещения
Совсем противоположная ситуация может произойти при обрыве нуля в однофазной сети 220 Вольт, то есть внутри Вашей квартиры, частного дома либо на даче. В этом случае последствием может стать поражение человека электрическим током. Происходит это потому, что в розетке у Вас появиться одноименная фаза на обоих зажимах. Сейчас мы расскажем, чем вызвано появление так называемой второй фазы.
От Вашего вводного щитка ток проходит по фазному проводу, а так как большинство потребителей электроэнергии постоянно подключены к сети (та же люстра), при обрыве напряжение перейдет от фазы к нулю. Результат – в двух отверстиях розетки будет присутствовать электрический ток. Но это еще не самое страшное, т.к. главная опасность заключается в том, что удар током может произойти от любой техники.
Причина этому – неправильная система заземления сети в квартире либо доме. Если Вы подключите «землю» в распределительном щитке к нулевой шине (чего делать нельзя), при прикосновении к заземленному корпусу бытовой техники Вас сразу же ударит током. Последствия, как Вы понимаете, могут быть плачевными.
Сразу же предоставляем к Вашему вниманию правильный вариант защиты от обрыва нуля в доме — сеть с системой заземления TN-S:
Подведя итог по поводу последствий обрыва нуля в трехфазной и однофазной сети, следует отметить следующее: при повреждении нулевого провода на стояке подъезда опасность распространиться на бытовую технику, а при повреждении рабочего нуля в самой квартире угроза распространится на Вас.
Увидеть, что может произойти, если оборвется нулевая жила, Вы можете на данном видео:
Наглядный обзор неисправности
Как определить опасность?
Чтобы найти место повреждения нулевого провода, можно воспользоваться специальным тестером, который сможет точно показать, где произошел обрыв даже под отделкой стен, как показано на фото ниже (если проводка скрытая). О том, как найти провод в стене, мы рассказывали в соответствующей статье.
Еще один вариант поиска – визуальный осмотр всей цепи. Просмотрите все соединения проводов в распределительном щитке. Возможно, ноль отгорел на одном из автоматов, что не сложно определить и устранить. Если же обрыв нулевого провода произошел на стояке подъезда, тут уже дело не Ваше и поиском неисправности займется ЖКХ либо специальная служба, которую они вызовут для осмотра силового трансформатора и вторичной цепи в том числе.
Чем защитить домашнюю электропроводку?
Для защиты бытовой электросети от обрыва нулевого провода нужно использовать специальные устройства: реле контроля и ограничители напряжения. Рекомендуем обязательно подключить данные устройства на вводном щитке, чтобы самостоятельно защититься от неблагоприятных последствий.
Причины явления
Источник: https://samelectrik.ru/chem-opasen-obryv-nulevogo-provoda-v-elektroseti.html
Обрыв нуля в трехфазной и однофазной сети
Даже те, кто не имеет электротехнического образования, наверняка слышали о такой аварийной ситуации, как перекос фаз. В некоторых предыдущих публикациях мы уже упоминали, чем грозит обрыв нуля, и кратко упоминали о способах защиты от несимметрии фазных напряжений. Сегодня мы более подробно рассмотрим данную тему.
Что такое обрыв нуля?
Для полноценного ответа на этот вопрос необходимо привести примеры штатной работы трехфазной схемы ввода электроснабжения. В качестве примера приведем упрощенный вариант с вводом для этажного распределительного щита.
Источник: https://aspenergo.ru/faza-est-nulya-net-chto-delat/
Две фазы в розетке, причины и решение
При нормальном режиме работы розетки проверяя наличие напряжения картина должна выглядеть следующим образом. При прикосновении индикатора напряжения к фазному проводу, должно появляться световое оповещение, а при прикосновении к нулевому, лампочка индикатора светиться не должна.
Но если розетка не работает, а индикатор показываетна проводах в розетке две фазы, что делать и как такое может быть?
Такое явление встречается довольно часто, как правило в домах со старой или некачественно выполненной электропроводкой. Откуда же берутся эти две фазы в розетке, давайте разберем возможные причины их появления:
Отгорел нулевой провод во внутренней системеэлектропроводки
Это наиболее распространенная причина. При отсутствии нулевого соединения фаза через нить накаливания лампочек в люстре, либо через электроприборы включенные в другие розетки наведенным током будет присутствовать и на нулевом проводе. При этом розетка, в которой находиться две фазы не работает. Правильно диагностировать данную причину можно выключив из всех розеток включенные в них электроприборы путем отсоединения вилок от розеток. Далее нужно перевести все выключатели в положение выключено.
Если вы не знаете в каком положение выключатель включен, а в каком выключен, можно просто выкрутить из люстр и светильников лампочки эффект будет тот же. После того как вы произвели все действия указанные выше, нужно еще раз проверить напряжение в розетке. У вас должно получиться следующее, на фазном проводе должна быть фаза, соответственно индикатор делает световое оповещение, а при прикосновении к нулевому, лампочка индикатора светиться не должна.
В этом случае причину неисправности следует начать искать:
- в местах недавно повешенных на стену картинах, фотографиях. Как правило в 95% случаев такой тюнинг жилья заканчивается перебитым проводом. В этом случае нужно отключить электропитание квартиры (выключить пробки, автоматы, пакетные выключатели) убедиться в отсутствии напряжения. Далее снять слой штукатурки и освободить провод, визуально диагностировать место повреждения и устранить неисправность путем соединения проводов и их изоляцией. После проведения всех работ, включаем подачу напряжения и проверяем работоспособность розетки. После этого место повреждения можно замазывать штукатурным либо гипсовым раствором.
- если же никаких работ по обновлению дизайна жилья перед тем как в розетке появились две фазы не проводилось, то возможная неисправность может быть в распределительной коробке. В этом случае поиски начать следует с распределительных коробок, которые находиться в комнате где расположена розетка. Отключаем электроснабжение квартиры, снимаем крышку распределительной коробки, ищем обгоревшие, оплавленные либо отвалившееся провода. Если в этой распределительной коробке неисправности нет открываем ближайшее. После того как вы визуально диагностировали неисправность, приступаем к ее устранению. Делаем новое соединение, изолируем, закрываем крышку распределительной коробки, включаем электропитание и проверяем работоспособность розетки.
- в электро щитке. Если вы имеете доступ в силовой щит, вы можете открыть его и визуально просмотреть все контакты и соединения. При обнаружения оплавленных проводов, подгоревших контактов, отвалившихся от мест присоединения проводов нужно немедленно обратиться в обслуживающую данный электрощит организацию для устранения неполадок. Производить самостоятельный ремонт без снятия напряжения ОПАСНО ДЛЯ ЖИЗНИ.
Произошло перенапряжение
- Перенапряжение — это повышение или понижение значений напряжения с нормальных (220-230 вольт) до высоких (360-380 вольт) или наоборот низких (40-80 вольт). Когда происходит перенапряжение, сначала может моргать свет, потом начинают очень ярко или очень тускло гореть лампочки.
Основную опасность представляют те случаи когда происходит повышение напряжения (360-380 вольт). Начинают сильно светиться лампочки, в некоторых случаях даже гудят, начинает дымиться бытовая электроника.
Моментально реагируют на повышенное напряжение: компьютеры, микроволновые печи, электронные часы, телевизоры, аудио и видео техника. Перегорают, либо начинают некорректно работать.
При низких значениях напряжения (40-80 вольт) такого значительного ущерба бытовой технике не наноситься, из-за низкого напряжения она просто не включается, а освещение при этом еле светиться, так, что можно разглядеть еле тлеющую нить накала в лампочке. Причина очень банальна, где то по линии электропроводки от подстанции до вашего счетчика повредился нулевой провод.
Что происходит во время перенапряжения? В современных электросетях используются четырех жильные кабельные линии. Три жилы используются для передачи трех независимых фаз, а четвертая для нуля. Когда повреждается нулевой провод, ток подобно воде мгновенно заполняет свободную нишу и устремляется туда где самая маленькая нагрузка, в итоге получается что по по фазному проводу и по нулевому приходят две фазы вместо положенных 220 вольт, так получается 380. Соответственно раз ток убежал в свободную нишу с маленькой нагрузкой, то там откуда он убежал остается маленькое напряжение (40-80 вольт) или совсем ничего.
Что делать?
- Нужно быстро отключить электроснабжение квартиры
- выключить из розеток все бытовые приборы
- перевести все выключатели в положение отключено.
- Вызвать обслуживающий электро персонал. Дождаться устранения бригадой электромонтеров причин перенапряжения, далее ими делаются контрольные замеры напряжения, составляется акт и только после этого можно вновь восстановить электропитание вашей квартиры.
Наведенный ток
Розетка работает в нормальном режиме, но при замере индикатором диагностируются две фазы. Такое явление часто встречается, если рядом с вашим домом проходит высоковольтная линия электропередач.
Это один из самых опасных случаев, так как наведенное напряжение будет диагностироваться индикатором даже при полностью отключенной подачей напряжения в квартиру, что может ввести в заблуждение даже профессионала в данном вопросе. В этом случае поможет вольтметр, либо мультиметр, он безошибочно покажет наличие или отсутствие напряжения.
Треугольник
Для передачи электроэнергии между населенными пунктам напряжение электрической сети многократно повышается. Это делается для сокращения токовой нагрузки сети, проще говоря с ростом напряжения сила тока в линиях электропередачи понижается.
Например, если приходя в ВРУ жилых строений линейное напряжение сети (между фаз) составляет 380 Вольт, то на высоковольтных линиях электропередач напряжение может повышаться от 6 000 до 1150 000 Вольт.
Понижение до 380 Вольт, происходит внутри трансформаторных подстанций, где установлен понижающий трансформатор тока.
В электрике существуют две схемы соединения обмоток понижающих трансформаторов «звезда» и «треугольник». В большинстве случаев в современных электрических сетях для бытовых нужд применяется схема «звезды», здесь все стандартно, есть 3 фазы и ноль (глухозаземленная нейтраль). Линейное напряжение = 380 Вольт (напряжение между фаз), а фазное = 220-240 Вольт (между фазой и нулем, землей).
На ВРУ, как правило, приходит четырех жильный кабель, по которому подается напряжение 380 Вольт, далее происходит разделение на отдельные лини «ноль + фаза», которые и приходят в квартиру. В итоге на розетке получаем напряжение сети 220-240 Вольт.
А вот в «треугольнике» нуля нет, есть только три фазы и все. На ВРУ приходит трехжильный кабель, по которому подается напряжение 380 Вольт.
Так как в схеме треугольника фазное напряжение = линейному, далее он делится на отдельные линии «фаза + фаза» и именно в таком виде напряжение приходит в жилые квартиры. То есть в такой сети на обоих контактах розетки будет две фазы, при этом бытовые электроприборы в нормальном режиме работы будут исправно функционировать. В розетке будет напряжение 380 Вольт.
Стоит отметить, что схема треугольника в современных сетях встречается все реже и реже, в большинстве случаев в районах городов и селений старого жилого фонда.
Источник: https://elektrika-svoimi-rykami.com/v-rozetke-dve-fazi/v-rozetke-dve-fazy
Фаза и ноль в электрике — назначение фазного и нулевого провода
Хозяин квартиры или частного дома, решивший проделать любую процедуру, связанную с электричеством, будь то установка розетки или выключателя, подвешивание люстры или настенного светильника, неизменно сталкивается с необходимостью определить, где в месте производства работ находятся фазный и нулевой провод, а также кабель заземления.
Это нужно для того, чтобы правильно подсоединить монтируемый элемент, а также избежать случайного удара током. Если вы имеете определенный опыт работы с электричеством, то такой вопрос не поставит вас в тупик, но для новичка он может оказаться серьезной проблемой.
В этой статье мы разберемся, что такое фаза и ноль в электрике, и расскажем, как найти эти кабели в цепи, отличив их друг от друга.
В чем отличие фазного проводника от нулевого?
Назначение фазного кабеля – подача электрической энергии к нужному месту. Если говорить о трехфазной электросети, то в ней на единственный нулевой провод (нейтральный) приходится три токоподающих. Это обусловлено тем, что поток электронов в цепи такого типа имеет фазовый сдвиг, равный 120 градусам, и наличия в ней одного нейтрального кабеля вполне достаточно. Разность потенциалов на фазном проводе составляет 220В, в то время как нулевой, как и заземляющий, не находится под напряжением. На паре фазных проводников значение напряжения составляет 380 В.
Линейные кабели предназначены для соединения нагрузочной фазы с генераторной. Назначение нейтрального провода (рабочего нуля) заключается в соединении нулей нагрузки и генератора. От генератора поток электронов перемещается к нагрузке по линейным проводникам, а его обратное движение происходит по нулевым кабелям.
Нулевой провод, как было сказано выше, не находится под напряжением. Этот проводник выполняет защитную функцию.
Назначение нулевого провода заключается в создании цепочки с низким показателем сопротивления, чтобы в случае короткого замыкания величины тока хватило для немедленного срабатывания устройства аварийного отключения.
Таким образом, за повреждением установки последует ее быстрое отключение от общей сети.
В современной проводке оболочка нейтрального проводника бывает синей или голубой. В старых схемах рабочий нулевой провод (нейтраль) совмещен с защитным. Такой кабель имеет покрытие желто-зеленого цвета.
В зависимости от назначения электропередающей линии она может иметь:
- Глухозаземленный нейтральный кабель.
- Изолированный нулевой провод.
- Эффективно-заземленный ноль.
Первый тип линий все чаще используется при обустройстве современных жилых зданий.
Чтобы такая сеть функционировала правильно, энергия для нее вырабатывается трехфазными генераторами и доставляется также по трем фазным проводникам, находящимся под высоким напряжением. Рабочий ноль, являющийся по счету четвертым проводом, подается от этой же генераторной установки.
Наглядно про разницу между фазой и нолем на видео:
Для чего нужен заземляющий кабель?
Заземление предусмотрено во всех современных электрических бытовых устройствах. Оно помогает снизить величину тока до уровня, который безопасен для здоровья, перенаправляя большую часть потока электронов в землю и защищая человека, коснувшегося прибора, от электрического поражения. Также заземляющие устройства являются неотъемлемой частью громоотводов на зданиях – через них мощный электрический заряд из внешней среды уходит в землю, не причиняя вреда людям и животным, не становясь причиной пожара.
На вопрос – как определить провод заземления – можно было бы ответить: по желто-зеленой оболочке, но цветовая маркировка, к сожалению, довольно часто не соблюдается. Бывает и такое, что электромонтер, не обладающий достаточным опытом, путает фазный кабель с нулевым, а то и подключает сразу две фазы.
Чтобы избежать подобных неприятностей, нужно уметь различать проводники не только по цвету оболочки, но и другими способами, гарантирующими правильный результат.
Домашняя электропроводка: находим ноль и фазу
Установить в домашних условиях, где какой провод находится, можно разными способами. Мы разберем только самые распространенные и доступные практически любому человеку: с использованием обычной электрической лампочки, индикаторной отвертки и тестера (мультиметра).
Про цветовую маркировку фазных, нулевых и заземляющих проводов на видео:
Проверка с помощью электролампы
Перед тем, как приступить к такой проверке, нужно собрать с использованием лампочки устройство для проверки. Для этого ее следует вкрутить в подходящий по диаметру патрон, после чего закрепить на клемме провода, сняв изоляцию с их концов стриппером или обычным ножом. Затем проводники лампы нужно поочередно прикладывать к тестируемым жилам. Когда лампа загорится, это будет означать, что вы нашли фазный провод. Если проверяется кабель на две жилы, уже понятно, что вторая будет нулевой.
Проверка индикаторной отверткой
Хорошим помощником в работе, связанной с электрическим монтажом, является индикаторная отвертка. В основе работы этого недорогого инструмента лежит принцип протекания сквозь корпус индикатора емкостного тока. В ее состав входят следующие основные элементы:
- Металлический наконечник, имеющий форму плоской отвертки, который прикладывается к проводам для проверки.
- Неоновая лампочка, загорающаяся при прохождении сквозь нее тока и сигнализирующая таким образом о фазовом потенциале.
- Резистор для ограничения величины электрического тока, который защищает устройство от сгорания под воздействием мощного потока электронов.
- Контактная площадка, позволяющая при прикосновении к ней создать цепь.
Профессиональные электромонтеры используют в своей работе более дорогие светодиодные индикаторы с двумя встроенными элементами питания, но простенькое устройство китайского производства вполне доступно любому человеку и должно иметься у каждого хозяина дома.
Если вы проверяете наличие напряжения на проводе с помощью этого прибора при дневном свете, то придется приглядываться в ходе работы более внимательно, так как свечение сигнальной лампы будет плохо заметно.
При касании жалом отвертки фазного контакта сигнализатор загорается. При этом ни на защитном нуле, ни на заземлении светиться он не должен, в противном случае можно сделать вывод, что в схеме подключения имеются неполадки.
Пользуясь этим индикатором, будьте внимательны, чтобы нечаянно не коснуться рукой провода под напряжением.
Про определение фазы наглядно на видео:
Проверка мультиметром
Для определения фазы с помощью домашнего тестера прибор нужно поставить в режим вольтметра и измерить попарно величину напряжения между контактами. Между фазой и любым другим проводом этот показатель должен составлять 220 В, а прикладывание щупов к заземлению и защитному нулю должно показывать отсутствие напряжения.
Заключение
В этом материале мы подробно ответили на вопрос, что собой представляют фаза и ноль в современной электрике, для чего они нужны, а также разобрались, какими способами можно определить, где в проводке находится фазная жила. Какой из этих способов предпочтительнее, решать вам, но помните, что вопрос определения фазы, ноля и заземления очень важен. Неправильные результаты проверки могут стать причиной сгорания приборов при подключении, или, что еще хуже – причиной поражения электрическим током.
Источник: https://YaElectrik.ru/elektroprovodka/faza-i-nol-v-elektrike
Две фазы в розетке. Как такое может быть?
Здравствуйте, уважаемые читатели и гости сайта «Заметки электрика».
Сегодняшняя статья будет посвящена распространенной неисправности, которая может произойти в электропроводке Вашей квартиры или дачи. Речь пойдет от том, как в обычной розетке может появиться две фазы. Для опытного электрика определить причину возникновения этой неисправности не составит труда, а вот обычных граждан — это может поставить в тупик.
Сразу перейду к примеру.
Предположим, что Вы включили в розетку электрический чайник, а он не работает.
В первую очередь необходимо проверить наличие напряжения в розетке с помощью указателя напряжения. Проверяем в одном полюсе (гнезде) розетки — указатель показывает фазу.
На фотографии не совсем отчетливо видно, как горит световой индикатор однополюсного указателя, поэтому место свечения я выделил красным цветом.
Проверяем во втором полюсе (гнезде) розетки — и указатель тоже показывает фазу.
Как так? Почему в розетке две фазы?
Причины появления в розетке двух фаз. Как устранить?
Не нужно пугаться. На самом деле это не две фазы, а одна фаза, т.е. одноименная. Это легко можно проверить путем измерения напряжения в этой розетке с помощью мультиметра — он покажет «0».
Тогда возникает вопрос — как такое может произойти? На самом деле причин может быть несколько, перечислю самые частые.
1. Обрыв нулевого проводника N на вводе в квартиру
Рассмотрим пример на простенькой схеме, которую я специально для Вас собрал.
Фаза с вводного кабеля подключена на автоматические выключатели 16 (А) и 10 (А). Первый автомат установлен в розеточную линию, а второй — на линию освещения. Вводной ноль подключен на шинку N, а защитный РЕ проводник — непосредственно на розетку. Надеюсь, что цветовую маркировку проводов Вы все помните.
В розетку подключен электрический чайник, а в качестве лампы используется энергосберегающая лампа на 26 (Вт).
Вот монтажная схема того, что я собрал выше:
Напоминаю!!! В нормальном режиме на одном полюсе (гнезде) розетки должна быть фаза, а на другом — ноль.
Вот рабочее состояние собранной схемы. Электрический чайник включен, лампа освещения горит.
Предположим, что в этажном щитке на нулевой колодке ослаб винтовой зажим нулевого провода N нашей квартиры и он выпал из клеммы.
Т.е. при обрыве вводного нуля лампа освещения сразу же погаснет, а в розетке появятся две фазы. Одна фаза придет через автоматический выключатель 16 (А) розеточной линии на первый полюс розетки.
Другая фаза придет через автоматический выключатель 10 (А) линии освещения, далее через выпрямительный мост энергосберегающей лампы (в случае с лампой накаливания — через нить накаливания), нулевую шинку N и на второй полюс розетки — оранжевая линия на схеме.
Если выключить автомат 10 (А) линии освещения или выкрутить лампу, то фаза на втором полюсе розетки пропадет.
Для устранения неисправности в этажном щите необходимо завести выпавший нулевой проводник N под клемму и затянуть винт крепления. Все, неисправность устранена.
2. Обрыв нуля в распределительной коробке
Еще одна причина появления двух фаз в розетке — это обрыв нулевого проводника N в распределительной коробке. Все аналогично предыдущему случаю, только обрыв нуля происходит непосредственно в распределительной коробке, например, из-за слабого контактного соединения проводов. Также не редкость, когда в распределительной коробке обламываются алюминиевые провода из-за частого их изгиба.
При такой неисправности одна часть квартиры будет работать в нормальном режиме, а та часть квартиры, которая была подключена к этой распределительной коробке работать не будет.
В этом случае необходимо найти распределительную коробку, произвести ее осмотр и найти в каком месте обломился ноль. Соединяем обломившийся ноль и проверяем работу электрических приборов.
Переходите по ссылочке и читайте статью про все разрешенные способы соединения проводов.
3. Аппарат защиты в нулевом проводе
В большинстве квартир жилых домов еще до сих пор эксплуатируется старая электропроводка, которая была выполнена по старым требованиям. В таких схемах аппараты защиты (чаще всего пробки-автоматы ПАР или предохранители «жучки») устанавливались, как в фазе, так и в нуле. В настоящее время устанавливать в нулевом проводе аппараты защиты запрещено ПУЭ (п.3.1.17, п.3.1.18, п.7.1.21). Об этом в скором времени будет отдельная подробная статья. Подписывайтесь на получение новостей, чтобы не пропустить выпуск.
При возникновении перегруза в какой-либо линии автоматический выключатель может сработать только в нуле, что вызовет появление в розетке двух фаз.
Для исправления такой ситуации необходимо убирать из нулевого провода аппараты защиты, устанавливать шинку N, и вообще нужно избавляться от таких видов автоматов. Они очень не надежны. При капитальном ремонте электропроводки в жилых домах мы именно этим и занимались.
4. Сверление
Внимание, совет!!! Перед тем как сверлить стену, проверьте это место с помощью детектора скрытой проводки .
Если этим пренебречь, то можно случайно повредить скрытую электропроводку. При этом может возникнуть три вида неисправности:
- замыкание жил кабеля (проводов) между собой
- обрыв всех жил кабеля (проводов) в стене
- обрыв нулевой жилы
В первом случае сработает автоматический выключатель этой линии, после чего его нельзя будет включить повторно, т.к. необходимо устранять короткое замыкание. Во втором случае — автоматический выключатель сработает, после чего его можно будет включить, правда ни один электрический прибор работать не будет. В третьем случае появятся две фазы в розетке.
Здесь выход из ситуации следующий: либо прокладывать новую линию, например, в кабель канале, либо раздалбливать место повреждения и соединять провода.
5. Грызуны
В частных домах причиной обрыва нуля могут быть грызуны. Об этом я подробно писал в статье про скрытую электропроводку в деревянном доме.
По материалам данной статьи смотрите видео:
Дополнение: прошу неисправность, рассмотренную в данной статье не путать с ситуацией обрыва нуля в трехфазной сети. Там последствия будут куда более печальными.
P.S. На этом свою статью я заканчиваю. Надеюсь теперь Вы знаете, что нужно делать и где искать неисправность, если электрические приборы перестали работать, а в розетке появились две фазы. Спасибо за внимание.
Если статья была Вам полезна, то поделитесь ей со своими друзьями:
Источник: http://zametkielectrika.ru/dve-fazy-v-rozetke/
Фаза и нуль в электрике: что значит
В каждом современном доме есть электричество, благодаря которому работают розетки, лампочки и многие другие виды электрооборудования. Включая свет в комнате, пылесос в розетку или заряжая смартфон, мало кто задумывается, как же этот свет и зарядка в гаджете появляются. Что становится причиной работы лампочки и гула пылесоса? Вопросов, если подумать, много, но ответ один — электроэнергия
Фаза и нуль в электрике
Электроэнергия появляется в результате упорядоченного движения заряженных частиц в проводах — электронов. Рождаются эти электроны в огромных электростанциях — таких как, например, Волгоградская ГРЭС (гидроэлектростанция), Нововоронежская АЭС (атомная электростанция) и многих других в нашей стране. Далее по очень толстым проводам эта энергия передается на промежуточные подстанции (как правило, такие стоят по периферии городов), а от них — до местных КТП (комплектная трансформаторная подстанция), которые есть почти в каждом дворе.
Линия электропередач
Уровни напряжения в таких сетях варьируются от 750000 вольт до 380 вольт в конечной КТП. И именно последние делают так, что в розетке обычного дома появляется 220В. Казалось бы, все просто, но! В розетке находятся два провода. И из уроков физики каждый знает, что в электрике есть «фаза» и «нуль». Эти два слова дают нам свет, тепло, воду, газ и многое другое, чем мы пользуемся каждый день. Теперь по-порядку.
КТП
Фаза и нуль: понятия и отличие
Существует такое понятие, как напряжение. Это слово означает степень напряженности электрического поля в данной точке или цепи. Иначе его называют потенциалом. Если очень простыми словами, то это некий поршень, что дает толчок для электронов, чтобы они прошли по проводам и зажгли лампочку в люстре.
В общей цепи (фаза ноль), той, что приходит на люстру или розетку, есть два провода. Один из них и есть фаза. Именно этот провод находится под напряжением. Фаза в электротехнике сравнима с плюсом в автомобиле — это основное питание для сети.
Вам это будет интересно Расчет эквивалентного сопротивленияФаза, ноль, земля в розетке
Нуль — это провод, который не находится под напряжением (это именно то, чем отличается ноль от фазы). Он не перегружен в процессе отбора мощности, но, тем не менее, по нему так же течет электрический ток, только в направлении, обратном фазному. В отсутствии напряжения он является безопасным в плане поражения человека электротоком.
Зачем нужен ноль в электричестве
Нуль замыкает электрическую цепь. Без этого провода в цепи не может быть электрического тока, который и дает мощность для питания бытовых приборов. По сути, нулевой провод — это земля.
Откуда берется ноль в электросети
Начало свое нуль берет от комплектной трансформаторной подстанции 6(10)/0,4 кВ, где трансформатор своей нулевой шиной соединен с контуром заземления. Изначально именно земля является проводником с нулевым потенциалом, и именно поэтому многие путают нуль с землей.
ВЛ (воздушная линия электропередачи), выходя из КТП, имеет 4 провода — 3 фазы и нуль, который в начале линии соединен с нулем трансформатора.
На протяжении воздушной линии через одну опору производится повторное заземление, которое дополнительно связывает нуль линии с землей, что дает более полноценную связь цепи «фаза — нуль» для того, чтобы у конечного потребителя в розетке было не менее 220В.
Фаза, ноль и земля в проводе
Зачем нужен нуль
Основное назначение нулевого провода — замыкание цепи для создания электрического тока для работы любого электроприбора. Ведь для того, чтобы ток появился, необходима разность потенциалов между двумя проводами. Нуль потому так и называется, что потенциал на нем равен нулю. Отсюда и уровень напряжения 220В — 230В.
Как найти нуль и фазу
В домашних условиях, даже не имея специальных приборов и приспособлений, возможно определить в обычной розетке, какой из двух проводов является фазой, а какой нулем. В этом случае используются электролампа или индикаторная отвертка.
Проверка с помощью электролампы
Для поиска нуля и фазы достаточно взять обыкновенный патрон с лампочкой и прикрутить два провода на его штатные места. Затем один из этих проводов подключить к заземляющим ножам в розетке, а второй — к любому из двух силовых разъемов.
Фазным будет являться тот разъем, при подключении к которому лампочка будет загораться. Это происходит потому, что по Правилам устройства электроустановок (ПУЭ), в вводном электрощите нулевые провода всех розеток должны быть соединены с земляными проводами этих же розеток. А отдельно земляная шина должна быть соединена с защитным контуром заземления. Именно это и обеспечивает наличие надежного нуля во всей цепи энергоснабжения дома.
Вам это будет интересно Для чего нужно выравнивание потенциаловЭлектролампа
Обратите внимание! Самостоятельно подобные процедуры допустимо делать только в том случае, когда квалифицированной помощи ждать неоткуда, а также в случае аварийной ситуации (пожар, короткое замыкание, попадание человека под напряжение). Не стоит забывать, что электрический ток очень опасен. Не стоит рисковать своим здоровьем и своей жизнью из-за лампочки!
Индикаторная отвертка
Для того, чтобы определить фазу в сети переменного тока напряжением 220В — 230В, можно использовать бытовой указатель напряжения — индикаторную отвертку. Продается он практически в любом хозяйственном магазине и стоит (в зависимости от конструкции) очень недорого.
Пример исправной индикаторной отвертки
Как правило, инструкции к применению у подобных инструментов нет, поэтому, чтобы не получить электротравму, следует помнить несколько простых правил, применимых к любому инструменту, соприкасающемуся с токоведущими частями:
- Использовать инструмент только по назначению (запрещается применять указатель напряжения — индикаторную отвертку — в качестве обыкновенной отвертки для закручивания/откручивания винтов, саморезов, шурупов и т.д.)
- Перед использованием инструмента следует внимательно рассмотреть состояние изоляции на рукояти и жале (применимо для любых отверток, в том числе для индикаторных). Ни в коем случае не использовать приспособление, если изоляционное покрытие имеет сколы или вообще отсутствует.
- Проверять работоспособность индикаторных устройств необходимо на электроустановках, заведомо находящихся под напряжением (например, в удлинителе, в который включен работающий электроприбор).
Отвертка с изолированным жалом
В случае сомнения в работоспособности индикатора следует считать его неисправным, а электроустановку действующей.
Так же существуют более точные и безопасные приборы для определения наличия напряжения в сети — это мультиметры, токоизмерительные клещи, вольтамперфазометры (ВАФ) и другие.
Мультиметр
В быту, как правило, используются простые мультиметры. Они способны показать наличие напряжения в сети и его значение. Намного безопаснее использовать для определения фазы именно эти приборы, так как их щупы имеют диэлектрическую рукоятку. Принцип определения такой же, как и в случае с патроном — достаточно один щуп приложить к земляному контакту розетки, а второй накладывать на один из двух контактов розетки.
Пример мультиметра
Электроэнергия (согласно второму закону Ньютона) не появляется из ниоткуда и не уходит в никуда. Она производится, транспортируется и потребляется на глазах. Нужно знать, откуда она берется, как к нам попадает и в каком виде. Каждый должен понимать, что в бытовом потреблении есть провода, которые могут нанести вред здоровью человека, а есть и такие, которые совершенно безвредны, поэтому необходимы небольшие знания и минимум приборов для определения и разграничения этих проводов. Но любые манипуляции с электричеством лучше доверять профессионалу — квалифицированному специалисту, чтобы избежать беды.
Источник: https://rusenergetics.ru/polezno-znat/faza-nol