Индуктивность дросселя для люминесцентных ламп

Содержание

Дроссель для люминесцентных ламп: схема подключения

Индуктивность дросселя для люминесцентных ламп

» Освещение

Несмотря на повышение спроса на светодиодные источники света, люминесцентные лампы все еще остаются на пике популярности. Во многом это объясняется относительно небольшой стоимостью осветительного устройства и пускорегулирующего аппарата (далее ПРА), необходимого для его работы. Рассмотрим функциональное назначение и принцип работы последних.

Основные функции

Люминесцентные источники света не представляется возможным напрямую включить в электрическую сеть. На это имеются следующие причины:

  • чтобы создать стойкий разряд в лампе люминесцентного типа, необходимо предварительно разогреть ее электроды и подать на них стартовый импульс;
  • поскольку источники света газоразрядного типа обладают отрицательным дифференциальным сопротивлением, для них характерно после выхода в рабочий режим возрастание силы тока. Его необходимо ограничивать, чтобы не допустить выхода источника света из строя.

Исходя из описанных выше причин, необходимо использовать  ПРА.

ПРА электромагнитного типа

Принцип работы

Рассмотрим принцип работы электромагнитного дросселя на примере типичной схемы подключения для ламп газоразрядного типа .

Типичная схема подключения

На схеме обозначены:

  • EL – лампа газоразрядного (люминесцентного) типа;
  • SF – стартер, он представляет собой устройство состоящее из колбы, наполненной инертным газом, внутри нее находятся контакты из биметалла. Параллельно к колбе установлен конденсатор;
  • LL –дроссель (электромагнитный);
  • спирали лампы (1 и 2);
  • C – конденсатор (компенсирует реактивную мощность), его емкость зависит от мощности лампы, ниже показана таблица соответствия.
Мощность газоразрядного источника (Вт) Емкость конденсатора (мкФ)
15 4,50
18 4,50
30 4,50
36 4,50
58 7,00

Встречаются устройства, в схемах которых отсутствует компенсирующий конденсатор,  это недопустимо, поскольку реактивная нагрузка приводит к следующим негативным последствиям:

  • происходит увеличение потребляемой мощности, что приводит к повышенному расходу электроэнергии;
  • существенно сокращается ресурс оборудования.

Теперь перейдем непосредственно к принципу работы, приведенной выше типовой схемы. Условно ее можно разделить на следующие этапы:

  • при подключении к электросети, через цепь дроссель «LL» – спираль « 1» – стартер «SF» – спираль «2» начинает проходить ток, сила которого от 40 до 50 мА;
  • под воздействием этого процесса в колбе стартера ионизируется инертный газ, что приводит к повышению силы тока и разогреву биметаллических контактов;
  • нагревшиеся электроды в стартере замыкаются, это вызывает резкое повышение силы тока, примерно до 600 мА. Дальнейший его рост ограничивает индуктивность дросселя;
  • за счет увеличившейся силы тока в цепи происходит разогрев спиралей (1 и 2), в результате чего ими излучаются электроны, разогревается газовая смесь, что приводит к разряду ;
  • под воздействием разряда возникает ультрафиолетовое излучение, которое попадает на покрытие из люминофора. В результате он светится в видимом спектре;
  • когда источник света «зажигается», его сопротивление уменьшается, соответственно, понижается напряжение на дросселе (до 110 В);
  • контакты стартера остывают и размыкаются.

Тандемное подключение

Ниже показана схема, где две лампы люминесцентного типа включены последовательно.

Схема тандемного подключения

Принцип работы у представленной схемы не отличается от типового подключения, единственная разница — в параметрах стартеров. При двухламповом подключении применяются стартеры, у которых «пробивное» напряжение 110 В (тип S2), для однолампового – 220 В (тип S10).

Стартеры S10 и S2 на 220 и 110 В соответственно

Особенности дросселей электромагнитного типа

Говоря об особенностях электромагнитных ПРА, необходимо заметить, что единственные преимущества этих устройств – относительно невысокая цена, простая эксплуатация и несложный монтаж. Недостатков у классической схемы подключения значительно больше:

  • наличие громоздкого и «шумного» дросселя;
  • стартеры, к сожалению, не отличаются надежностью;
  • наличие эффекта стробирования (лампа мерцает с частотой 50 Гц) вызывает повышенную утомляемость у человека, что приводит к снижению его работоспособности;
  • при вышедших из строя стартерах проявляется фальстарт, то есть лампа, перед тем как «зажечься», несколько раз мигает, это снижает рабочий ресурс источника света;
  • примерно около 25% мощности расходуется на электромагнитный балласт, в результате существенно снижается КПД.

Использование электронного ПРА позволяет избавиться от большинства из перечисленных выше недостатков.

Пускорегулирующий аппарат электронного типа (ЭПРА)

Массово ЭПРА появились  не так давно, около тридцати лет назад, в настоящее время они практически вытеснили электромагнитные устройства. Этому способствовали многочисленные преимущества перед классической схемой включения, назовем основные из них:

  • повышение световой отдачи ламп люминесцентного типа благодаря высокочастотному разряду;
  • отсутствие шума, характерного для низкочастотных электромагнитных дросселей;
  • снижение эффекта стробирования значительно расширило сферу применения;
  • отсутствие фальстарта увеличивает срок эксплуатации люминесцентных источников;
  • КПД может достигать 97%;
  • по сравнению с ПРА электромагнитного типа, энергопотребление снижено на 30%;
  • нет необходимости компенсировать реактивную нагрузку;
  • в некоторых моделях электронных устройств предусмотрено управление мощностью источника освещения, это производится регулировкой частоты в преобразователе напряжения.

ЭПЛА внешний вид и внутренне устройство

Стоит также отметить: благодаря отсутствию громоздкого дросселя, стало возможным уменьшить размеры электронного балласта, что позволило  разместить его в цоколе. Это существенно расширяет сферу применения, делая возможным использование в осветительных приборах вместо источников, в которых используется нить накала.

ЭПРА, размещенный в цоколе

В качестве примера приведем схему простого электронного балласта, типичную для большинства недорогих устройств.

Схема типичного ЭПРА

Перечень элементов:

  • номиналы резисторов: R1 и R2 -15 Ом, R3 и R4 – 2,2 Ом, R5 – 620 кОм, R6 – 1,6 Мом;
  • используемые конденсаторы: C1 – 47 нФ 400 В, С2 – 6800 пФ 1200 В,  С3 – 2200пФ, С4 – 22 нФ, С5 – 4,7 мкФ 350 В;
  • диоды: VD1-VD7 – 1N400;
  • транзисторы: Т1 и Т2 – 13003;
  • диодный симистор VS – DB3.

Завершая тему ЭПРА, необходимо заметить — их существенным недостатком является относительно высокая стоимость качественных устройств. Что касается недорогих моделей, надежность таковых оставляет желать лучшего.

Подключение без балласта

При необходимости газоразрядные источники света возможно включить в сеть питания без электромагнитного или электронного балласта. Схема такого включения показана ниже.

Бездроссельный способ подключения

Для реализации такого подключения понадобится:

  • лампа люминесцентного типа – 40 Вт и накаливания – 60 Вт (последняя будет работать как балластное сопротивление);
  • два конденсатора 0,47 мкФ 400 В (играют роль умножителя);
  • диодный мост КЦ404А или аналогичный, можно использовать четыре диода, рассчитанных под ток не менее 1 А и обратное импульсное напряжение 600 В.

Данная схема проигрывает по своим параметрам подключению при помощи электромагнитного дросселя и ЭПРА. Она приведена для ознакомления.

Обсудить на форуме

Источник: https://www.asutpp.ru/drossel-dlya-lyuminescentnyx-lamp.html

Подробно о дросселе для люминесцентных ламп

Индуктивность дросселя для люминесцентных ламп

Конструкция люминесцентной лампы такова, что без пускорегулирующего устройства будет очень сложно организовать ее работу. Для этого раньше использовался электромагнитный балласт или ЭмПРА (его основной элемент – дроссель), а сегодня на его смену пришел более совершенный вариант – электронный пускорегулирующий аппарат (ЭПРА). Несмотря на это, сегодня все еще в ходу оба вида приборов.

Где еще применяется?

Дроссель используется все реже, быть может, со временем он выйдет из употребления за ненадобностью. Ведь подключение газоразрядной лампы таким способом является основной сферой применения данного прибора. Дроссель играет решающую роль в работе люминесцентной лампы, так как создает приемлемые условия для работы осветительного прибора данного вида: сдерживает возрастающий ток на определенном уровне, что позволяет поддерживать достаточное значение напряжения на электродах в колбе.

Эта особенность переводит дроссель в разряд балласта. Кроме того, схема подключения люминесцентной лампы содержит еще один элемент – стартер. Он ответственен за размыкание цепи.

Это приводит к возникновению ЭДС самоиндукции в дросселе, что, в свою очередь, способствует повышению напряжения до уровня 700-1000В. Результатом данных процессов является пробой и включение люминесцентной лампы.

Принцип работы и обзор видов

Устройство дросселя для газоразрядных ламп довольно простое: по сути, это катушка индуктивности с ферромагнитным сердечником. Такой прибор используется, только если схема предусматривает подключение лампы с помощью электромагнитного пускорегулирующего аппарата. Электронный ПРА содержит в своей конструкции стабилизатор и преобразователь частоты, эти элементы позволяют зажечь свет, так как реализуют функции дросселя и стартера.

Чтобы ответить на вопрос, зачем нужен дроссель, рекомендуется сначала понять принцип его работы. При включении в цепь происходит сдвиг фаз между основными электрическими параметрами: напряжением и током. Это отставание определяется такой характеристикой, как cosφ (коэффициент мощности). При определении расчетного значения активной составляющей нагрузки учитывается данная величина. Если показатель коэффициента мощности небольшой, возрастает уровень нагрузки. Поэтому в схему включают еще и конденсатор с компенсационной функцией.

Используя данный элемент (3-5 мкФ) при подключении люминесцентных ламп, мощность которых достигает 36 Вт, можно добиться увеличения cosφ до 0,85. Минимальный предел мощности люминесцентных ламп в данном случае – 18 W. Емкость конденсатора для источников света 18 W и 36 W может быть одинаковой. Уровень выдерживаемой дросселем нагрузки должен соответствовать мощности источника света.

Различают несколько исполнений таких приборов, каждое из которых отличается по величине потери мощности:

  • D (обычный);
  • В (пониженный);
  • С (самый низкий).

Принцип действия дросселя предполагает расход части мощности не по прямому назначению, а на нагрев прибора. Полезная работа при этом не выполняется, а значит, уровень потерь определяет эффективность функционирования: чем выше эта величина, тем больше греется дроссель для подключения люминесцентной лампы.

Основные плюсы

Несмотря на то, что сегодня популярность ЭмПРА заметно снизилась, такие приборы все равно используются. Это обусловлено рядом преимуществ:

  • обеспечение безопасной работы люминесцентной лампы, для чего нужен еще и стартер;
  • возможность сдерживать ток на определенном уровне;
  • частичная стабилизация светового потока, но принцип работы ЭмПРА таков, что полностью убрать мерцание газоразрядных ламп невозможно;
  • доступная цена.

Именно благодаря последнему фактору из вышеназванных, пускорегулирующее устройство электромагнитного типа с дросселем сегодня еще используется. Кроме того, эти приборы отличаются простотой монтажа и несложной эксплуатацией.

Если есть проблемы в работе ламп, подключенных через дроссель (например, они не включаются), проверяется схема на предмет ошибок и качество соединения (подключение, обрывы проводов).

В случае, когда видимых причин нет, следует проверить исправность дросселя. Сделать это можно, подключив рабочую лампу накаливания. При обрыве источник света не горит, при витковом замыкании – светит в полную силу. Нормальный режим работы – вполнакала.

Варианты включения люминесцентных источников света

Схема подключения ламп данного вида через стартер и дроссель выглядит следующим образом:

Схема подключения к питанию

Можно выбрать вариант с компенсационным конденсатором или без него, все зависит от коэффициента мощности. От того, какой тип стартера используется, будет зависеть количество подключаемых последовательно ламп:

Принято считать, что без ПРА невозможно включить газоразрядный осветительный прибор. Это не совсем так. Если изменить схему, то бездроссельное подключение выполнить вполне реально. Чтобы обеспечить нормальные условия работы люминесцентного источника света, напряжение сети должно быть удвоенным и выпрямленным, для чего в схему вводится выпрямитель. А вместо балласта используется миниатюрная лампа накаливания, резистор или конденсатор для этой цели не подходит.

Непосредственно, схема подключения через источник света с нитью накаливания и выпрямителем:

Таким образом, газоразрядные лампы, в частности, люминесцентные исполнения, будут работать, если предусмотреть для них пускорегулирующее устройство. В зависимости от его типа (электронный или электромагнитный вариант) можно обеспечить разный уровень эффективности освещения. ЭмПРА включает в себя дроссель и стартер.

Первый из элементов создает нормальные условия для функционирования источника света (сдерживает рабочий ток на определенном уровне), поэтому считается, что без него освещение работать не будет. Но альтернатива есть – схема питания без дросселя, но с удвоенным напряжением источника питания.

(1 5,00 из 5)
Загрузка…

Источник: http://ProOsveschenie.ru/proizvodstvennye-pomeshheniya/podrobno-o-vybore-drosselya-dlya-lyuminescentnykh-lamp.html

Дроссели и их назначение при использовании люминесцентных ламп

Индуктивность дросселя для люминесцентных ламп

Дроссель — деталь, служащая для регулировки силы тока. Эта деталь разделяет или ограничивает электросигналы различной частоты и устраняет пульсацию постоянного тока.

Для чего и зачем нужен в устройствах дневного света

Люминесцентные лампы (дневного света) как один из видов разрядных ламп, невозможно подключить для освещения таким же образом, как и обычную нагревательную электролампу. Для их подключения необходимо использовать дополнительный пускорегулирующий аппарат.

Дроссель включается методом последовательного соединения с лампой дневного света и предназначается для ограничения тока, который протекает через ее электроды. Это устройство характеризуется наличием реактивного сопротивления, а также отсутствием излишнего тепловыделения. Дроссель может ограничить ток и организовать предотвращение его лавинообразного нарастания при включении в сеть.

Читайте также  Соотношение мощности ламп накаливания светодиодных и энергосберегающих

Дроссель — неотъемлемая составная часть любой стартерной системы включения. Помимо этого, он способен исполнять следующие дополнительные функции:

  • создание безопасного тока для конкретной лампы, при котором возможно обеспечение разогрева ее электродов при разжигании;
  • образование импульса повышенного напряжения, способствующего возникновению разряда в колбе лампы;
  • обеспечение стабилизации электрического разряда;
  • способствование бесперебойной работы лампы при отклонениях напряжения в электрической сети.

Технические характеристики

Основными техническими характеристиками рассматриваемой детали являются коэффициент потери мощности и индуктивность. Для обозначения этого коэффициента на устройстве указываются параметры тока, мощности и емкости конденсатора.

Индуктивностью называется индуктивное сопротивление, которое представляет возможным регулировать мощность электричества, поступающего на ламповые контакты.

Виды

Дроссели делятся на те же виды, что и подключаемые к ним лампы. Если подключить лампу к дросселю, который не соответствует ее характеристикам, то это, вероятнее всего, приведет к поломке какого-либо из элементов, используемых в системе подключения. Существуют следующие виды дросселей, подразделяемых в зависимости от мощности:

  • дроссель мощностью в 9 Вт — для энергосберегающих ламп;
  • 11 Вт — для миниатюрных светильников;
  • 15 Вт — для настольных светильников;
  • 18 Вт — для офисных ламп;
  • 36 Вт — для малых люминесцентных ламп;
  • 58 Вт — для потолочных светильников;
  • 65 Вт — для многоламповых потолочных светильников;
  • 80 Вт — для большых люминесцентных ламп.

Устройство

Типичная схема подключения дросселя газоразрядного типа представлена на рисунке ниже.

Условные обозначения:

  • EL — лампа;
  • SF — стартер;
  • LL — дроссель;
  • 1, 2 — спирали лампы;
  • C — конденсатор.

Отчего может греться

Дроссели чаще всего изготавливают из двух металлических материалов — алюминия и меди. Алюминиевые устройства обладают одним существенным недостатком — сильным нагреванием. В свою очередь, медные греются меньше из-за меньшего сопротивления в электрической цепи, и поэтому они являются гораздо более долговечными.

При использовании ламп дневного света дроссель должен постоянно поддерживать свою рабочую температуру. Для снижения температуры достаточно использовать простой компьютерный кулер. Однако, существует возможность выбрать и другой путь, заключающийся в покупке более дорогой системы охлаждения, например, водяной.

Помимо самой работы дросселя, он также способен перегреваться из-за короткозамкнутых витков. При такой проблеме помочь может только полная замена устройства. При замене рекомендуется выбрать детали из меди, основываясь на том, что они менее подвержены перегреву.

Практика показывает, что дроссели являются весьма долговечными устройствами при правильной их эксплуатации. А также нельзя не отметить тот факт, что дроссель способен погашать броски напряжения, даже очень сильные. Поэтому, если вы правильно подберете дроссель к своей люминесцентной лампе, то эта лампа может прослужить вам годами, и даже десятилетиями.

ПредыдущаяСледующая

Источник: https://OsvescheniePro.com/lampy/lyuminestsentnye/drosseli.html

Зачем нужен дроссель для люминесцентных ламп: устройство + схема подключения

Индуктивность дросселя для люминесцентных ламп

Согласитесь: лишние приборы, без которых вполне может работать система освещения, покупать и устанавливать ни к чему. К таким устройствам, вызывающим сомнение, относится дроссель для люминесцентных ламп. Вы не знаете, нужен ли он в схеме подключения или без него можно обойтись?

Мы поможем вам разобраться с возникшим вопросом. В статье подробно рассмотрены особенности, назначение дросселя и выполняемые им функции. Приведены фото и схема подключения, которая поможет самостоятельно собрать люминесцентный светильник и выполнить его запуск, правильно подключив все компоненты в электроцепь.

В помощь домашнему мастеру мы подобрали ряд видеороликов, содержащих рекомендации по подключению люминесцентных лампочек, а также по выбору нужного дросселя в зависимости от типа лампы.

Назначение и устройство дросселя

Разрядные лампы, представителем которых является люминесцентная разновидность, нельзя зажечь как обычные, обеспечив электроснабжение. Они попросту не будут работать. Чтобы получить свечение такого типа источника, потребуется дополнительно использовать пуско-регулирующий аппарат.

Назначение балласта в схеме включения

Выходит, что для функционирования люминесцентной лампочки необходимо не только обеспечить протекание тока, но и приложить к ней напряжение.

Поэтому в схеме включения задействуют балласт – сопротивление. Оно включается последовательно с лампой и предназначено для ограничения тока, протекающего через ее электроды.

Его роль могут выполнять различные электротехнические компоненты:

  • в случае постоянного тока – это резисторы;
  • при переменном – дроссель, конденсатор и резистор.

Среди этих приспособлений наиболее удачным вариантом является дроссель. Он обладает реактивным сопротивлением без выделения излишнего тепла. Способен ограничить ток, предотвратив его лавинообразное нарастание при включении в электросеть.

Дроссель не только является неотъемлемым элементом в стартерной схеме включения, он выполняет такие функции:

  • способствует созданию безопасного и достаточного для конкретной лампочки тока, который обеспечивает оперативный разогрев ее электродов при разжигании;
  • импульс повышенного напряжения, образующийся в обмотке, способствует возникновению разряда в колбе люминесцента;
  • обеспечивает стабилизацию разряда при номинальном значении электротока;
  • способствует беспроблемной работе лампочки вопреки отклонениям напряжения, периодически возникающим в сети.

Важное значение для функционирования люминесцентных источников света имеет индуктивность дросселя. Поэтому при покупке этого электромеханического компонента следует обращать внимание на технические параметры, которые должны соответствовать характеристикам лампочки.

При выборе электромеханического ПРА, который еще называют дросселем или ограничителем тока, имеют значение не только техпараметры, но и репутация производителя – неизвестные китайские фирмы могут предложить ограничитель, реальные характеристики которого значительно ниже заявленных

Из чего состоит пускорегулятор?

Дроссель, используемый в схемах включения лампочек люминесцентного типа, – это не что иное, как намотка провода на сердечнике – катушка индуктивности. Именно ее промышленное исполнение и носит название дросселя в электротехнике, что дословно переводится как «ограничитель».

Различные типы обмоток с разнообразными сердечниками, отличающиеся размерами, формой и внешним видом. Индуктивность конкретного изделия напрямую зависит толщины провода, плотности расположения витков в намотке и их количества, формы сердечника и прочих параметров

Дроссель с нужными техническими характеристиками производят в промышленных условиях, поэтому у потребителя не возникнет проблем при подборе нужного варианта, соответствующего параметрам подключаемой лампочки.

Более того, имея навыки сбора различных электротехнических приспособлений, соответствующие комплектующие и электроинструменты, можно попытаться самостоятельно соорудить катушку с нужной индуктивностью.

На схемах изображение дросселя может отличаться. В цепях подключения люминесцентных лампочек чаще всего можно встретить вариант L6 – обмотка с магнитопроводом ферритовым сердечником

Дроссель состоит из следующих элементов:

  • проволока в изоляционном материале;
  • сердечник – чаще всего ферритового типа или из прочего материала;
  • заливочная масса, компаунд – в ее состав входят вещества, устойчивые к горению, что обеспечивает дополнительную изоляцию витков обмоточного провода;
  • корпус, в который помещена намотка – его производят из термоустойчивых полимеров.

Наличие последнего элемента зависит от особенностей и характеристик конкретной модели ограничителя тока.

Участвуя в схеме розжига разрядной лампочки вместе со стартером, индуктивное сопротивление в виде дросселя ограничивает силу тока в момент подачи напряжения на лампу, а генерация ЭДС самоиндукции в размере 1000 В обеспечивает ее зажигание и стабилизирует горение дуги

Стартерная схема несовершенна, хотя и показывает отличный результат. Но мерцание лампочки, шумность дросселя и его большие размеры, а также фальшьстарт из-за ненадежного стартера привели к изобретению более совершенной версии пускорегулятора – электронной.

ЭПРА в процессе функционирования способствуют снижению мощности по­терь до 50%, избавляют от миганий лампочки. Их использование позволило уменьшить массу дросселей, а также существенно повысить отдачу осветительного прибора.

Правда стоимость электронного балласта существенно выше ЭМПРА, да и приобретать нужно у производителей с отличной репутацией – таких как Philips, Osram, Tridonic, прочие.

Схема + самостоятельное подключение

Люминесцентную лампочку просто так не включишь – ей требуется зажигатель и ограничитель тока. В миниатюрных моделях производитель все эти элементы предусмотрительно встроил в корпус и потребителю остается лишь вкрутить изделие в подходящий патрон светильника/люстры и щелкнуть выключателем.

А для более габаритных изделий потребуется пускорегулирующая аппаратура, которая бывает как электромеханического, так и электронного типа. Чтобы ее правильно подсоединить, обеспечив беспроблемную работу прибора, предстоит знать порядок подключения отдельных элементов в электроцепь.

Схема подключения люминесцентной лампочки (EL) с использованием дросселирующего аппарата, где LL – это дроссель, SV – стартер, C1, C2 – конденсаторы

Правда имея схему, но не имея практического опыта по выполнению подобного рода работ, сложно будет справиться с задачей. Более того, если подключение требуется выполнить вне дома – в коридоре учебного учреждения или прочего общественного заведения – то самовольное вмешательство в работу электросети может обернуться проблемами.

Для этого в штате учреждений должен быть электрик, работающий на постоянной основе или же обслуживающий заведение по мере возникновения потребностей в его услугах.

На схеме реализовано подключение двух лампочек люминесцентного типа последовательно. Существенная проблема – если сломается/перегорит одна из них, то вторая тоже работать не будет

Рассмотрим пошаговое подключение двух трубчатых ЛЛ к электросети с использованием стартерной схемы. Для чего понадобится 2 стартера, дросселирующий компонент, тип которого должен обязательно соответствовать типу лампочек.

А также следует обратить внимание на суммарную мощность пускателей, которая не должна превышать этот параметр у дросселя.

При подключении питающего кабеля к светильнику важно помнить, что за ограничение тока отвечает дроссель.

Значит, фазную жилу предстоит подсоединять через него, а на лампочку подключить нулевой провод.

Вторую жилу от питающего кабеля следует вставить в разъем электромеханического ПРА, который еще называют дросселем. Правильное отверстие выбирают исходя из обозначений, нанесенных на его корпусе Теперь предстоит заняться дальнейшим формированием цепи, соединив вторую ЛЛ со вторым стартером, а точнее, с его держателем. Для этого нужно взять еще одну короткую жилу и вставить один конец в разъем держателя лампочки, а второй – в отверстие крепления стартера Аналогичную процедуру предстоит проделать с другой стороны трубчатого люминесцента, тоже используя короткий проводок. Особое внимание следует уделить надежности создаваемого контакта – чтобы ничего не болталось Осталось завершить формирование цепи, используя еще одну длинную жилу, конец которой предстоит подключить в свободный разъем держателя второй лампочки, а второй – в отверстие дросселирующего компонента Теперь нужно закрепить все элементы схемы, требуемые для работы собранной системы. Для этого нужно взять 2 стартера, приобретенные заранее. Важно чтобы их тип и мощность соответствовали параметрам ЛЛ Каждый стартер, который еще называют пускатель, следует поставить в заранее подготовленные держатели, к которым уже успели подсоединить провода. Этот элемент представляет собой небольшую колбу с двумя электродами – жестким и гибким биметаллическим Второй стартер аналогично крепится в полости держателя, расположенного с противоположной стороны рядом с дросселем. От одного балластного компонента на 36 Вт можно запитать 2 лампочки Осталось самое интересное – проверить в действии собранную схему, включив питающий кабель в электрическую сеть. Если все выполнено правильно, то две ЛЛ запустятся и начнут светить. В противном случае они никак не отреагируют Фазную жилу питающего кабеля подсоединяют в дроссельСоединение второй лампы со вторым стартеромПодсоединение в цепь второй стороны лампыСоединение второй лампы с дросселемПо одному стартеру для каждой лампочкиУстановка пускателей в держателиДроссель один на две лампочкиПроверка работоспособности собранной схемы

Подобная схема подключения актуальна для больших осветительных приборов. Что же касается компактных моделей, то они оснащены встроенным механизмом запуска и регулировки – миниатюрным ЭПРА, вмонтированном внутри корпуса изделия.

В компактной люминесцентной лампочке между цоколем и трубками со смесью газов располагается пускорегулирующий аппарат маленьких размеров. Он отлично справляется с запуском прибора и по сроку службы может значительно выигрывать у других элементов ЛЛ

Перегрев дросселя и возможные последствия

Использование лампочек, у которых вышел срок службы и периодически возникают различные поломки, может обернуться пожаром. О том, как утилизировать отслужившие люминесцентные приборы, подробно написано здесь.

Избежать возникновения пожароопасной ситуации поможет регулярное инспектирование состояния осветительных приборов – визуальный осмотр, проверка основных узлов.

К концу службы лампы можно заметить существенный перегрев ПРА – конечно, водой проверять температуру нельзя, для этого следует воспользоваться измерительными приборами. Нагрев способен достигать 135 градусов и выше, что чревато печальными последствиями

При неправильной эксплуатации может произойти взрыв колбы ртутной лампочки. Мельчайшие частицы в состоянии разлететься в радиусе трех метров. Причем они сохраняют свои зажигательные способности, даже упав с высоты потолка на пол.

Опасность представляет перегрев обмотки дросселя – аппарат состоит из различных типов материалов, каждый из которых имеет свои характеристики. Например, изоляционные прокладки производители пропитывают сложными составами, отдельные элементы которых имеют неодинаковую горючесть и способность к образованию дыма.

Даже семь витков дросселя, в которых случилось замыкание, способны стать пожароопасными. Хотя большую вероятность возгорания представляет замыкание не менее 78 витков – этот факт был установлен опытным путем

Помимо перегрева дросселирующего элемента, существуют и другие ситуации с люминесцентными светильниками, представляющие пожарную опасность.

Это могут быть:

  • проблемы, обусловленные нарушением технологии изготовления ПРА, что повлияло на конечное качество аппарата;
  • плохой материал рассеивателя осветительного прибора;
  • схема зажигания – со стартером или без него пожарная опасность одинакова.

Следует помнить, что к проблемам может привести небрежность при выполнении подключения, плохое качество контактов или составляющих цепи, что чаще всего происходит при использовании совсем дешевых аппаратов, приобретенных у неизвестных производителей.

Добросовестные компании дают гарантию на свою продукцию, а технические параметры приборов, указанные на корпусе или упаковке, соответствуют действительности. Этот факт прямо влияет на срок службы как самого ПРА, так и газоразрядных лампочек, с особенностями устройства и работы которых ознакомит рекомендуемая нами статья.

Читайте также  Как подключить светодиодную лампу вместо люминесцентной?

Выводы и полезное видео по теме

Тонкости сборки схемы из двух ЛЛ с последовательным включением:

ролик о том, что такое дроссель и зачем он нужен:

Проверка дросселя на предмет поломки:

О правилах выбора дросселя в зависимости от типа разрядной лампы:

Ознакомившись с назначением и устройством дросселей, используемых для запуска люминесцентных лампочек, можно вооружиться схемой подключения и попытаться реализовать ее самостоятельно. Правда, это актуально для дома.

В общественных учреждениях решение подобных вопросов следует доверить электрикам, имеющим спецдопуск к электромонтажным работам.

Пишите, пожалуйста, комментарии в находящемся ниже блоке, размещайте фото по теме статьи, задавайте вопросы. Расскажите о том, как подбирали и подключали дроссель. Делитесь полезной информацией по аспектам выбора и технологии установки устройства.

Источник: https://sovet-ingenera.com/elektrika/svetylnik/drossel-dlya-lyuminescentnyx-lamp.html

Важный элемент люминесцентных ламп – дроссель: принцип работы, как выбрать

Индуктивность дросселя для люминесцентных ламп

Сегодня люминесцентные лампы – это довольно распространенная разновидность источников света. Они дают качественный спектр освещения, что и обеспечило им такую огромную распространенность в современном мире. Подходящий спектр освещения лампы дневного света создают благодаря особой конструкции, одной из главных частей которой является дроссель.

Балласты для лампы дневного света

Что собой представляет дроссель для люминесцентных ламп, а также особенности его строения вы узнаете из этой статьи.

Люминесцентные лампы и их строение

Поскольку во многих помещениях сегодня используются лампы дневного света, то важно знать, из чего они состоят. Эта информация поможет не только правильно эксплуатировать подобные осветительные установки, но и при необходимости ремонтировать их своими руками.

Обратите внимание! Лампы дневного света сегодня активно используются как для уличного, так и для внутреннего освещения.

Люминесцентные лампы в интерьере

Для освещения, реализуемого через лампы дневного света характерны следующие достоинства:

  • высокая интенсивность свечения;
  • широкий диапазон распространения света;
  • высокая надежность освещения;
  • возможность работы в разнообразном температурном режиме. В связи с этим такие лампочки можно использовать и для уличного типа освещения;
  • небольшой нагрев корпуса светильника;
  • свечение источника света характеризуется отменными техническими характеристиками;
  • излучение света осуществляется в строго определённом режиме и спектре. При этом свечение здесь максимально близко к дневному типу света;
  • высокая износостойкость. Люминесцентные лампы могут проработать без сбоя до 20 тысяч рабочих часов;
  • отличная производительность.

Лампы дневного света обладают одной особенностью – их нельзя напрямую подключать в стандартную электрическую сеть. Такая ситуация возникла по следующим причинам:

  • для создания стойкого разряда в такой лампочке необходимо предварительное разогревание электродов, а также подача на них стартового импульса;
  • наличие необходимости ограничения возрастания силы тока, которое имеет место после выхода устройства из рабочего состояния.

Поэтому в своей конструкции лампы дневного света содержат ПРА (пускорегулирующий аппарат). Он необходим для нормальной работы люминесцентной лампочки. Важным элементом ПРА любого типа (например, ЭПРА) является дроссель.

Важный элемент элкетросхемы

Дроссель является необходимой составляющей люминесцентных ламп, необходимый для бесперебойной и длительной работы. Для эффективной работы ламп дневного света нужны не только дроссели, но также стартеры и другие элементы электросхемы.

Внешний вид дросселя

Дроссель устройство представляет собой индуктивную катушку. В нее вставлен сердечник, имеющий металлическую оправу. Все это сверху сокрыто под кожухом. Вот такое строение и имеют дроссели, которые используются внутри люминесцентных ламп.
Для ламп дневного света осуществляет подбор балласта по мощности.

Обратите внимание! Дроссели, подбираемые для люминесцентных ламп, должны иметь с ними одинаковую мощность. Этот параметр обязательно нужно учитывать, чтобы лампочка работала, как надо.

Назначение дросселей с электросхеме источника света данного типа заключается в ограничении подачи тока до нужного уровня, который необходим каждому отдельному светильнику. Вот для чего в конструкции любой лампы дневного света всегда будет встречаться дроссель. Кроме этого наличие дросселей в конструкции источника света продиктовано следующими причинами:

  • дросселирующее приспособление осуществляет зажигание нити накаливания;
  • дроссели также регулируют мощность тока.

В конструкции ЭПРА или ПРА другого типа он нужен для выполнения роли балласта. Он берет на себя в электроцепи лишние ватты.
Таким образом балласт в лампах люминесцентного типа нужен для того, чтобы создавать электроимпульс, с помощью которого происходит поджиг газоразрядной лампы. Именно это устройство создает для данного источника света необходимые условия для работы.

Принцип работы балласта

На данный момент существуют два типа дросселей: электрический и электромагнитный. Оба вида имеют идентичное назначение и различаются перечнем достоинств и недостатков, а также тем, в какие ПРА они вставляются. При этом они имеют схожий принцип работы. Рассмотрим принцип работы электромагнитного дросселя. Он имеет следующую схему подключения.

Схема подключения электромагнитного дросселя

Схема расшифровывается следующим образом:

  • EL – люминесцентная лампа;
  • SF – стартер;
  • LL – электромагнитный балласт (дроссельное устройство);
  • 1 и 2 — спирали лампы;
  • C – конденсатор.

Теперь можно рассмотреть принцип работы данного типа устройства:

  • в момент подключения к сети через LL и спираль 1 проходит, а также SF начинает проходить ток. Его сила равна 40-50 мА;
  • в колбе SF ионизируется инертный газ, в результате чего сила тока повышается и разогревается биметаллические контакты;
  • далее электроды SF замыкаются. Это приводит к повышению силы тока до 600 мА. После этого его рост ограничивает LL;
  • далее происходит разогрев обеих спиралей и в газовой смеси образуется разряд;
  • таким образом создается ультрафиолетовое излучение, попадающее на внутренний слой люминофора.

В итоге лампочка начинает светиться. В связи с этим можно заключить, что дроссели в таких устройствах имеют следующий принцип работы – осуществляют на 90 градусов сдвиг фазы перепоенного тока. В результате они поддерживают необходимый уровень тока в электросхеме.
Такой принцип работы характерен для люминесцентных светильников уличного и внутреннего типа освещения.

Разнообразие выбора

Чтобы правильно выбрать балласт для ламп дневного света, нужно знать достоинства и недостатки существующих на рынке моделей. Как уже говорилось выше, на сегодняшний день выделяют следующие виды данной продукции:

  • электромагнитный. Устройство электромагнитного типа встречается в в обычных ПРА.
  • электронный дроссель. Его также еще называют дроссель электрический. На сегодняшний день он считается более совершенным вариантом. Они используются в ЭПРА;

Рассмотрим эти виды данной продукции более детально.
Особенностью источников света, где используются электромагнитные виды дроссельных устройств, является их невысокая стоимость, а также простой монтаж и эксплуатация.

Электромагнитный балласт

Однако их недостатки значительно превышают эти преимущества. К недостаткам электромагнитных дросселей можно отнести следующие моменты:

  • громоздкие размеры;
  • создание шума во время работы;
  • имеется эффект стробирования, что может негативным образом сказываться на качестве освещения;
  • на такой балласт уходит примерно 25% мощности.

Поэтому такие устройства часто используются для создания уличного типа освещения.

Обратите внимание! Все перечисленные выше недостатки не содержит электронный дроссель, который используется в ЭПРА.

Электронный ПРА

На сегодняшний день именно ЭПРА наиболее часто используются для включения люминесцентных ламп. ЭПРА стали массово появляться примерно 30 лет назад и на сегодняшний день они уже практически полностью вытеснили электромагнитные типы балластов и ПРА. Это связано с тем, что ЭПРА имеют следующие преимущества в эксплуатации:

  • увеличенная световая отдача, которая стала возможна благодаря высокочастотному разряду;
  • минимизирован эффект стробирования. Это позволило значительно расширить сферу применения данного типа осветительных приспособлений;
  • отсутствие шума;
  • отсутствие фальстарта;
  • увеличение сроков эксплуатации;
  • энергопотребление уменьшилось примерно на 30 %;
  • КПД находиться примерно на уровне 97%;
  • отсутствует необходимость компенсировать реактивную нагрузку.

Обратите внимание! Некоторые модели ЭПРА обладают способностью управлять мощностью источника освещения. Это стало возможным благодаря регулированию частоты в преобразователе напряжения.

Как видим, по своим характеристикам ЭПРА является самым выгодным типом устройства для ламп дневного света. Поэтому именно данный тип балласта и следует выбирать для внутреннего устройства люминесцентных лампочек.

Дополнительная информация для правильного выбора

Кроме вышеописанных типов балластов, применяемых для эффективной работы ламп дневного света, они могут делиться на различные типы по таким же характеристикам, что и сами лампочки.

Обратите внимание! Если к источнику света подключить балласт, который не соответствует ему по техническим характеристикам (например, по мощности), то это приведет к поломке всей осветительной установке.

В связи с этим, выбирая дроссели для люминесцентных ламп, необходимо обращать на технические характеристики, как самих источников света, так и балластов. Эти знания понадобиться в ситуации, ремонт люминесцентного типа источника света будет осуществляться своими руками. В таком случае можно сэкономить на оплате работы профессионального ремонтника и своими руками починить такой осветительный прибор.

Заключение

Знания о том, как устроена люминесцентная лампа, и какую роль в ее работе играет балласт, помогут вам использовать эту разновидность источника света максимально долго и, при необходимости, провести замену испорченного элемента электросхемы своими руками.

Источник: https://1posvetu.ru/ustrojstva/drossel-dlya-lyuminestsentnyh-lamp.html

Дроссель для люминесцентных ламп: 36вт, электронный, устройство, назначение

Индуктивность дросселя для люминесцентных ламп

До настоящего времени дроссель для ламп был незаменимым узлом люминесцентного светильника (ЛЛ), выпущенная английской компанией General Electric в 1934 году. Она создала первые трубки с горячим катодом, в которых использовался положительный разряд в колонке в ртутной атмосфере низкого давления, для генерации коротковолнового УФ-излучения. Последнее стимулировало флуоресцентное порошковое покрытие на внутренней поверхности разрядной трубки. Хотя в той конструкции еще отсутствовали многие современные функции, но именно General Electric стал первопроходцем на рынке флуоресцентных ламп.

Дроссель для лампочек

Популярность люминесцентных ламп подтверждается тем фактом, что она и сегодня вырабатывает больше количества света на планете, чем любой другой источник. Пик производства был достигнут к 1970-му году. По современным оценкам, сегодня на их долю приходится около 80% мирового искусственного освещения.

Люминесцентное освещение

Люминесцентный вид освещения предлагает низкую стоимость системы, очень большой срок службы. Он полностью диммируемый и простой в использовании, и, кроме того, достигает высокой световой отдачи. Большая площадь трубки хорошо подходит для эффективного и безбликового освещения больших пространств.

Флуоресцентная лампа использует электричество, чтобы ртутный газ смог излучать ультрафиолетовый (УФ) свет. Когда этот свет, который невидим невооруженным глазом, взаимодействует с покрытием порошка люминофора внутри трубки, он начинает светиться и излучать яркий свет. Для того чтобы контролировать пропускаемое электричество, используют дроссель или в западной терминологии — дроссель балласт или механизм управления. Он представляет собой небольшое устройство, подключенное к электрической цепи источника света, которое ограничивает количество тока, проходящего через него.

Дроссель для лампочек

Поскольку напряжение в бытовой сети имеет более высокое значение, чем необходимо для работы светильника, дроссель первоначально дает источнику скачок напряжения для запуска, а затем только поддерживает минимальное количество для безопасной работы.

Процесс, который происходит внутри флуоресцентного света, вовлекает молекулы ртутного газа, нагреваемые электричеством. Без дросселя, контролирующего этот процесс, на лампу поступало бы много тока, который вывел бы ее из строя.

Флуоресцентные лампы используют два вида балластов:

  1. Магнитные, которые устарели и сегодня уже не используются в новых моделях ламп. Работа их построена на принципах электромагнетизма, когда электрический ток проходит через провод, он генерирует вокруг себя магнитную силу. Балласт содержит катушку из медной проволоки. Магнитное поле, создаваемое проводом, задерживает большую часть тока. Это количество может колебаться в зависимости от толщины и длины медной проволоки.
  2. Электронный дроссель для люминесцентных ламп использует более сложные схемы и компоненты, может с большей точностью контролировать ток, проходящий через люминесцентные лампы. По сравнению со своими магнитными аналогами они меньше, легче, эффективнее и, благодаря подаче энергии на гораздо более высокой частоте, практически не вызывают мерцание или жужжание.

Характеристики

Базовые функции балластов: обеспечивает процесс подогрева катодов для старта процесса электронной эмиссии, создает напряжение стартового разряда и последующее ограничение рабочего тока. В режиме переменного тока, он обеспечивает сдвиг фаз (cos f) между I и U, называемым коэффициент мощности. Эта величина обозначается в паспорте и маркировки балласта. Активная мощность рассчитывается по соотношению: P = U х I х cosf, очевидно, что низкий cos f дает рост использования реактивной энергии.

Маркировка балласта

В связи, с чем балласты группируются по уровню мощности:

  • С— низкий показатель;
  • В— супернизкий;
  • D — средняя возможность поглощения.

Классификация и по уровню шума:

  • С — очень низкий шумовой эффект;
  • А — особо низкий показатель;
  • П — пониженный шум;
  • Н — норма.

Технические характеристики балласта должны соответствовать показателям мощности лампы, иначе она работать не будет.

Люминесцентные ламы требуют установку дросселей различной мощности:

  • Вт до 15.0 Вт — небольшие настольные светильники;
  • 16.0 Вт до 36.0 Вт — потолочные и настенные бытовые осветительные устройства;
  • 37.0 Вт до 80.0 Вт — мощные промышленные осветительные системы с несколькими единичными точками света.

На территории России выпуск люминесцентных ламп и комплектующих производятся достаточно большими партиями — от миллиона ламп в год. Производство организовано на предприятиях: «ЛИСМА-ВНИИС» им. Лодыгина, «Фотон», Саранский завод точных приборов, компании «СЭПО-ЗЭМ». Среди западных производителей популярностью пользуются греческая компания Schwabe Hellas и финская Helvar. Считается, что балласты и стартеры лучше приобретать известных марок, таких как Navigator или Luxe.

Как работает

Первоначально, подается переменное напряжение, которое пройдя через дроссель, попадает на лампу. Так как мощность передается через балласт, который является индуктором, он ограничивает ток и препятствует возникновению короткого замыкания в лампе. Далее ток проходит через нити накаливания и нагревает их, а также присутствующие в трубке газы.

Работа люминесцентных ламп

Разрядная трубка заполнена газообразным аргоном и имеет внутри фосфорное покрытие, а также содержит небольшое количество ртути. Затем ток поступает на стартер, внутри которого есть биметаллическая полоса, расширяемая при нагревании и замыкающая цепи, минуя лампу и создавая короткое замыкание. Когда цепь замкнута, напряжение падает до нуля. После того биметаллическая полоса остынет, она возвращается в исходное положение, открывая цепь. Так как в балласте имеется индуктор и собственное магнитное поле.

Во время размыкания цепи, магнитное поле разрушается и это создается «индуктивный удар с всплеском высокого напряжения, проходящего через нить накала, создавая дугу, для возбуждения фотонов в газовой среде аргона. Их эмиссия вызывает излучение ультрафиолетового света, который, проходя через фосфорное покрытие лампы, преобразуется в видимый свет.

Читайте также  Пересчет мощности светодиодных ламп на обычные

Назначение дросселя

Принципиальные схемы электронных балластов разные. Но все они поддерживают фактическую типовую структурную схему:

  1. Сначала подключается последовательный резистор. Он подключен для ограничения тока перегрузки и короткого замыкания. В некоторых электронных балластах вместо последовательного резистора используется предохранитель. Этот резистор имеет очень низкое значение до 22 Ом.
  2. Затем подключается схема фильтра электромагнитных помех, который состоит из одного последовательного индуктора и одного параллельного конденсатора.
  3. Затем используется выпрямительная схема для преобразования переменного тока в постоянный. Схема мостового выпрямителя состоит из четырех PN диодов.
  4. Конденсатор подключен параллельно для фильтрации постоянного тока, поступающего из выпрямительной цепи.

Применяется инверторная схема с использованием двух транзисторов. Эти транзисторы создают высокочастотный переменный ток и повышающий трансформатор. С частотой в электронном балласте от 20.0 кГц до 8.00 кГц. Как правило, транзистор создает прямоугольный токовый сигнал. Повышающий трансформатор повышает уровень напряжения до 1000.0 В. В начальный момент и после того, как лампочка накаливания загорается, напряжение на ней снижается до 230 В. Таким образом главное назначение дросселя в люминесцентной лампе — сдерживать ток при работе осветительного прибора.

Конструкция

Конструктивно он выполнен из индуктивной катушки, намотанной на ферримагнитный сердечник, имеющего сходство с трансформатором, но с одной обмоткой из медного эмаль-провода.

Типовая структура дросселя:

  • Проволока с изолированным покрытием;
  • сердечник ферритовой конструкции, обеспечивающий индуктивность;
  • компаунд для заливки — негорючее вещество, для дополнительного обеспечения межвитковой изоляции;
  • корпус из термоустойчивых полимеров для размещения функциональных узлов.

Катушка

Дроссель в схеме ЛЛ должен выполнить скачок, чтобы возникло ЭДС самоиндукции катушки по правилу Ленца. Чтобы увеличить эти свойства, провод накручивают на сердечник, тем самым увеличивая электромагнитный поток.

Таким образом, по устройству балласт — это обыкновенная катушка, работающая по типу электротрансформатора.

Катушка дросселя

Обратите внимание! Перед применением нужно их точно рассчитать, чтобы обеспечить работоспособность ламп. Особенно в момент старта свечения, когда потребуется разряд достаточно высокого напряжения, чтобы пробить газовую среду.

После чего балласт, примет на себя функции гасящего устройства. Поскольку для того чтобы ЛЛ светилась, больших параметров тока не требуется, в связи с чем этот класс светильников обладает повышенной экономичностью.

Сердечник для балласта

Индуктивность дросселя люминесцентных ламп обеспечивается сердечником, поэтому он выполняется из пластин с ферромагнитными свойствами, изолированные друг от друга, чтобы препятствовать токам Фуко, создающим недопустимые помехи в работе. Он служит мощным функциональным барьером, как при снижении входного напряжения, так и при его подъеме.

Сердечник

Конструкция относится к низкочастотным схемам. Переменный ток в бытовых электросетях имеет большой диапазон колебаний: от 1.0 до миллиарда Гц и выше и группируется по таким градациям:

  1. Звуковые низкие частоты с диапазоном от 20.1 Гц до 20.1 кГц.
  2. Ультразвуковые от 20.1 кГц до 100.1 кГц.
  3. Сверхвысокие свыше 100.1 кГц.

Дополнительная информация. Сердечник присутствует только у низкочастотных дросселей, в высокочастотных вариантах сердечники не устанавливаются. Для намотки медного провода, применяют пластиковые каркасы или обыкновенные резисторы. В этом случае трансформатор выполнен в форме секционной, многослойной намотки.

Как подобрать

В паспортной документации для дросселя указывается, какие типы, и конфигурации ламп предназначены для работы с ним. Для правильного выбора нужно обратить внимание на следующие данные:

  1. Контрольный список параметров выбора дросселя ЛЛ.
  2. Тип запуска — мгновенный или запрограммированный.
  3. Обычный балластный коэффициент (от 0,77 до 1,1) является значением по умолчанию для большинства ламп.
  4. Входное напряжение — 120/230/380В.
  5. Минимальная начальная температура от −17С до 20С.
  6. Схема — параллель это норма. Это позволяет другим лампам оставаться зажженными, даже если одна лампа в приборе гаснет.
  7. Контроль анти-стратификации — нежелательные яркие и тусклые области, которые могут образовывать структуру стоячей волны по всей длине лампы. Полоски более вероятны, когда лампа работает при низких температурах.
  8. Оценка звука: балласт с рейтингом «А» будет тихо гудеть; балласт с рейтингом «D» вызовет ярко выраженный шум.
  9. Гарантия производителя.

Вам это будет интересно  Различные системы подсветки лестницы

Как подключить дроссель

Установка люминесцентного дросселя не сложная, но, как и всегда, при работе с электрическими цепями, лучше доверить ее квалифицированному специалисту, если у пользователя не соответствующей группы допуска по электробезопасности.

Алгоритм установки дросселя на ЛЛ:

  1. При установке люминесцентного осветительного прибора сначала отключают питание от сети.
  2. Снимают пластину рассеивателя, закрывающую лампу и удаляют саму лампу.
  3. При получении доступа к дросселю снимают с него крышку и отсоединяют все провода. Перед этим рекомендуется удостовериться, что питание прибора не выполняется, используя тестер напряжения.
  4. После приобретения необходимого балласта выполняют зачистку проводов для подсоединяют по указанной схеме.
  5. Включают электропитание только тогда, когда все вышеперечисленные шаги были выполнены в обратном порядке ибалласт будет полностью установлен.

Обратите внимание! Согласно европейским нормам старые дросселя утилизируют, поскольку они содержат токсины, вредные для окружающей среды.

Как заменить

В последнее время очень часто такая операция вызвана необходимостью замены магнитных дросселей на электронные. Этот процесс довольно прост и понятен, но также должен выполнятся специалистами электриками.
Процесс замены балласта с магнитного на электронный:

  1. Отключают питание на прибор.
  2. Открывают светильник, снимают колбу и балластный кожух.
  3. С помощью кусачек обрезают силовые (коричневые) и нейтральные (синие) провода, идущие в прибор.
  4. Закрывают провода проволочными гайками.
  5. Кусачками, отрезают провода и снимают магнитный балласт.
  6. Присоединяют электронный балласт в место, где был магнитный.
  7. Подключают провода питания и нейтрали к соответствующим балластным проводам.
  8. Закрепляют провода проволочными гайками.
  9. Возвращают колбу лампы и дроссельный кожух обратно.
  10. Включают питание на лампу.

Правильно установленные и функционирующие электрические осветительные балласты должны долго проработать, обеспечивая безопасный, хорошо регулируемый ток для ламп освещения без раздражающего мерцания и гудения.

Схема дневного освещения

Дроссель, хоть и выполняет сегодня важную роль в установке ЛЛ, но уже не является незаменимым, его место занял электронный пускорегулирующий аппарат ЭПРА (электронный балласт). Собственникам помещений,планирующим устанавливать такое освещение нужно учитывать, что 1 июля 2018 года в России запрещено применение трубчатых ЛЛ, а также ртутных ламп, а с начала 2020 года будут запрещены люминесцентные и натриевые светильники.

Источник: https://rusenergetics.ru/svet/drossel-dlya-lyuminestsentnykh-lamp

Для чего нужен дроссель для люминесцентных ламп?

Индуктивность дросселя для люминесцентных ламп
Подключение лампы с электромагнитным дросселем

Электромагнитный дроссель находит применение в цепях коммутации люминесцентной лампы.

Назначение дросселя – формирование импульса для пробоя газонаполненной среды и поддержание необходимого напряжения и тока в схеме и на контактах элементов работающего светильника. Принцип работы дросселя основан на способности катушки индуктивности извлекать энергию из источника тока и сохранять ее в виде магнитного поля.

Чтобы выяснить, как работает дроссель, нужно рассмотреть свойства катушки индуктивности. Она плохо проводит переменный ток или совсем не проводит его. Индуктивность измеряется в Генри (Гн) и ее значение можно увеличить путем применения сердечника, оно таким образом повышается в несколько раз.

Во время замыкания контактов выключателя величина тока на катушке постепенно возрастает, а при размыкании сначала растет многократно, а затем плавно уменьшается. В соленоиде этот параметр не изменяется мгновенно.

Дроссель для люминесцентных ламп – это катушка индуктивности с ферромагнитным сердечником. Он находит применение только в электрических цепях, в которых предусмотрено наличие электромагнитного ПРА.

На картинках показана схема подключения газоразрядной лампы низкого давления с использованием электромагнитного дросселя.

  • 2 – электроды лампы;
  • 1 – колба (трубка);
  • Ст – стартер;
  • С1 – конденсатор, находящийся в одном корпусе со стартером;
  • С2 – конденсатор, повышающий коэффициент мощности;
  • Д – дроссель.

Механизм запуска лампы с электромагнитным балластом

При замыкании выключателя ток протекает по следующему пути: «дроссель – электрод лампы – стартер – второй электрод лампы – сеть».

Величины этого тока очень мало для зажигания лампы. Но его значения хватает для нагревания электродов стартера и появления в нем тлеющего разряда. Напряжение этого разряда меньше напряжения сети, но больше напряжения работающей лампы.

Разогретый биметаллический электрод в стартере замыкается со вторым, после чего тлеющий разряд между ними гаснет, электроды остывают и занимают первоначальное положение.

В момент замыкания электродов в стартере ток в схеме значительно возрастает и электроды люминесцентной лампы начинают нагреваться. В то же время при размыкании цепи на дросселе (в результате самоиндукции) происходит скачок напряжения, который, складываясь с входным напряжением сети, создает условия для включения лампы.

К этому моменту температура на электродах лампы успевает повыситься до значения, необходимого для эмиссии, а дросселирующее устройство создает высоковольтный импульс. Поэтому в лампе создаются условия для возникновения тлеющего разряда, который сначала происходит в аргоновой среде до тех пор, пока ртуть, помещенная в колбу, не перейдет полностью в парообразное состояние. После этого разряд будет происходить в ртутных парах, и лампа войдет в стабильный рабочий режим.

Напряжение на работающей лампе меньше сетевого за счет его падения на дросселе. Поскольку для срабатывания стартера напряжение на нем должно превышать величину напряжения на включенной лампе, повторно разряд в этом приборе не зажжется.

Зажигание лампы происходит при условии совпадения по фазе импульса дросселируемого напряжения и напряжения сети. Но поскольку совпадения этих значений относительно разбросаны по времени, стартер может срабатывать неоднократно перед тем, как лампа войдет в рабочий режим. В этом случае наблюдается мигание лампы в процессе включения. Одновременно в стартере создаются радиопомехи, для подавления которых служит конденсатор, находящийся в общем со стартером футляре.

Так выглядит электромагнитный дроссель

Это означает, что кроме зажигания этого осветительного прибора дроссель необходим для ограничения возрастания тока разряда до величины, при достижении которой лампа выходит из строя.

Все, изложенное выше, объясняет, для чего нужен дроссель.

В результате того, что он ограничивает ток в схеме работающей лампы, он представляет собой дополнительную нагрузку (балласт) и на нем теряется какая-то часть мощности. По уровню этих потерь дроссели делятся на следующие классы: D – с обычными; C – с пониженными; B – с особо низкими.

Потери мощности в дросселях

Класс

Потери мощности, Вт

дросселя

С лампой С лампой

С лампой

18 Вт

36 Вт 58 Вт

D

12 10

14

С

10 9

12

В2

8

7

9

В1

6 6

8

В силу физических свойств дросселя на нем происходит сдвиг по фазам между напряжением и током. Ток отстает от напряжения на величину, которую принято обозначать как cos φ. Чем выше его значение, тем экономичнее прибор, и наоборот, при понижении этой величины энергоэффективность снижается.

На рисунке показан график изменения тока и напряжения на люминесцентной лампе и лампе накаливания.

Основные виды дросселей

  • Электромагнитный дроссель для лампы, который подключается последовательно с лампой и в схеме необходимо наличие стартера.

К его достоинствам можно отнести низкую стоимость, простоту конструкции и достаточную надежность.

Недостатки: возможность появления шума и мерцания во время работы и при запуске; довольно продолжительный процесс включения; необходимость подключения конденсатора для снижения потерь.

Мощность дросселя должна соответствовать мощности лампы.

  • Электронный дроссель, для подключения которого не нужен стартер.

Положительные качества: быстрое включение; обеспечение работы лампы без миганий; компактность, малый вес.

В результате использования этого вида дросселей снижаются мерцания. Пульсаций при запуске лампы не происходит. Снижается вероятность появления шума при работе.

Дроссели можно разделить на две группы по типу сетей, в которых эксплуатируются лампы:

  1. однофазные (для использования в быту) на 220 В;
  2. трехфазные, которые устанавливаются в светильниках, работающих в сетях на 380 В. Это светильники для освещения промышленных предприятий, улиц и объектов сельскохозяйственного профиля.

Все эти виды дросселей также можно разделить по месту их расположения:

  • находящиеся внутри корпуса светильника, который обеспечивает им защиту от неблагоприятных факторов внешней среды и атмосферы;
  • помещенные в специальный кожух. Такое герметичное исполнение позволяет устанавливать эти приборы в осветительных сетях наружного освещения.

Ремонт светильников с перегоревшими дросселями

Светильники с перегоревшими электромагнитными дросселями можно отремонтировать самостоятельно, заменив отказавший элемент другим, например, применяемым в иных вариантах световой аппаратуры.

Например, в настольных светильниках с ЭмПРА можно использовать плату (с элементами, обеспечивающими горение лампы) от энергосберегающей лампы.

Для этого нужно найти экономичную перегоревшую лампочку (той же мощности, что и у ремонтируемой) с сохранившейся в хорошем состоянии электронной «начинкой».

Перегоревшая энергосберегающая лампа с электронной начинкой

Далее необходимо отделить от лампы цоколь вместе с платой и извлечь саму плату. При этом запомнить, где находятся выводы на высоковольтный конденсатор, на лампу и на входное напряжение питания 220 В.

Отделение платы

Все штырьки, расположенные на плате, и конденсатор (на картинке он зеленого цвета) необходимо выпаять.

Он пойдет в нижнюю, пластмассовую часть цоколя настольной лампы.

Снимаем нижнюю пластину

Для этого снимаем нижнюю пластину в месте, отмеченном на рисунке, и вытаскиваем из вскрытого кожуха находящиеся в нем детали, которые были соединены при помощи латунных трубок с электродами лампы.

Вместо удаленных нами элементов к проводам, идущим на электроды, присоединяем конденсатор, выпаянный с платы, и помещаем во вскрытый кожух. После этого отделенную нами пластину возвращаем на место и приклеиваем клеем.

Присоединяем конденсаторПомещаем во вскрытый кожух

Далее создаем точки соединения штырьковых выводов электродов с проводами, выходящими с преобразующей электронной платы, снятой с энергосберегающей лампы.

Создаем точки соединения штырьковых выводов электродов с проводами

Для этого провода с коммутирующего разъема припаиваем к контактам платы на выходе (на рисунке они находятся слева).

Плату помещаем в защитный корпус.

Зачем это нужно сделать?

Так как элементы на плате находятся под высоким напряжением, в целях электробезопасности нужно закрыть к ним доступ.

Через провода, находящиеся справа на рисунке, в схему подается входное напряжение от сети 220 В.

Для подключения используем вилку и розетку.

Включенная лампа

Включаем созданную конструкцию в сеть. Лампа загорается, светильник работает.

Такие и многие другие самоделки позволяют экономить деньги на покупке товаров, взамен вышедших из строя. При наличии некоторого объема знаний и опыта всегда есть возможность сделать нужные изменения и ремонт светильника своими руками.

Источник: https://LampaGid.ru/vidy/lyuminestsentnye/drossel