Как можно изменить коэффициент мощности всей цепи?

Содержание

Увеличение косинуса фи

Как можно изменить коэффициент мощности всей цепи?

25 апреля 2015.
Категория: Электротехника.

Недозагрузка электродвигателей переменного тока

При недозагрузке электродвигателя потребляемая им активная мощность уменьшается пропорционально нагрузке. В то же время реактивная мощность изменяется меньше. Поэтому чем меньше нагрузка двигателя, тем с меньшим коэффициентом мощности он работает.

Так, например, асинхронный двигатель в 400 кВт при 1000 оборотах в минуту имеет «косинус фи», равный при полной нагрузке 0,83. При ¾ нагрузки тот же двигатель имеет cos φ = 0,8. При ½ нагрузке cos φ = 0,7 и при ¼ нагрузки cos φ = 0,5.

Двигатели, работающие вхолостую, имеют «косинус фи», равный от 0,1 до 0,3 в зависимости от типа, мощности и скорости вращения.

Неправильный выбор типа электродвигателя

Двигатели быстроходные и большой мощности имеют более высокий «косинус фи», чем тихоходные и маломощные двигатели. Двигатели закрытого типа имеют cos φ ниже, чем двигатели открытого типа. Двигатели, неправильно выбранные по типу, мощности и скорости, понижают cos φ.

Повышение напряжения в сети

В часы малых нагрузок, обеденных перерывов и тому подобного напряжение сети на предприятии увеличивается на несколько вольт. Это ведет к увеличению намагничивающего тока индивидуальных потребителей (реактивной составляющей их полного тока), что в свою очередь вызывает уменьшение cos φ предприятия.

Неправильный ремонт двигателя

При перемотке электродвигателей обмотчики вследствие неправильного подбора проводов иногда не заполняют пазы машины тем количеством проводников, которое было в фабричной обмотке. При работе такого двигателя, вышедшего из ремонта, увеличивается магнитный поток рассеяния, что приводит к уменьшению cos φ двигателя.

При сильном износе подшипников ротор двигателя может задевать при вращении за статор. Вместо того чтобы сменить подшипники, обслуживающий персонал иногда идет по неправильному и вредному пути и подвергает ротор обточке.

Увеличение воздушного зазора между ротором и статором вызывает увеличение намагничивающего тока и уменьшение cos φ двигателя.

Способы увеличения «косинуса фи»

Вышеперечисленные последствия низкого cos φ с достаточной убедительностью говорят о том, что необходимо вести борьбу за высокий cos φ. К мерам увеличения cos φ относятся:

  1. Правильный выбор типа, мощности и скорости вновь устанавливаемых двигателей;
  2. Увеличение загрузки двигателей;
  3. Недопущение работы двигателей вхолостую продолжительное время;
  4. Правильный и высококачественный ремонт двигателей;
  5. Применение статических (то есть неподвижных, невращающихся) конденсаторов.

Малый вес конденсаторов, отсутствие вращающихся частей, незначительные потери энергии в них, легкость обслуживания, безопасность и надежность в работе дают возможность широкого применения статических конденсаторов для повышения cos φ двигателей.

Подбирая величину емкости при параллельном соединении и емкости, можно добиться уменьшения угла сдвига фаз между напряжением и общим током при неизменной активной и реактивной мощности, потребляемой ветвью с индуктивностью. Этот угол можно сделать равным нулю. Тогда ток, текущий на общем участке цепи, будет иметь наименьшую величину и совпадать по фазе с напряжением сети.

Это явление называется компенсацией сдвига фаз и широко используется на практике.
По экономическим соображениям невыгодно доводить угол φ до нуля, практически целесообразно иметь cos φ = 0,9 – 0,95.

Рассмотрим расчет емкости конденсаторов, которые нужно включить параллельно индуктивной нагрузке, чтобы повысить cos φ до заданной величины.

На рисунке 1, а изображена схема включения индуктивной нагрузки в сеть переменного тока. Для увеличения коэффициента мощности параллельно потребителю включена батарея конденсаторов. Векторная диаграмма начинается с построения вектора напряжения U. Ток I1 вследствие индуктивного характера нагрузки отстает по фазе от напряжения сети на угол φ1. Необходимо уменьшить угол сдвига фаз между напряжением U и общим током до величины φ. Иначе говоря, увеличить коэффициент мощности от значения cos φ1 до значения cos φ.

Рисунок 1. Увеличение cos φ при помощи статических конденсаторов:
а – схема включения; б – векторная диаграмма

Отрезок ос, представляющий активную слагающую тока I1, равен:

ос = I1 × cos φ1 = оа × cos φ1 .

Пользуясь выражением мощности переменного тока

P = U × I × cos φ ,

отрезок ос выразим так:

Ток на общем участке цепи I равен геометрической сумме тока нагрузки I1 и тока конденсатора IC.

Из треугольника оас и овс имеем:

ас = ос × tg φ1 ;
bс = ос × tg φ .

Из диаграммы получаем:

ab = od – ac – bc = ос × tg φ1 – ос × tg φ = oc × (tg φ1 – tg φ) .

Так как и ab = IC , то

Вместе с этим, как было указано выше,

IC = U × ω × C .

Следовательно,

Пример 1. Электрические двигатели шахты потребляют мощность 2000 кВт при напряжении 6 кВ и cos φ1 = 0,6. Требуется найти емкость конденсаторов, которую нужно подключить на шины установки, чтобы увеличить cos φ до 0,9 при f = 50 Гц.

Решение.

cos φ1 = 0,6;     φ1 = 53°10’;     tg φ1 = 1,335;

cos φ = 0,9;     φ = 25°50’;     tg φ = 0,484;

Источник: Кузнецов М. И., «Основы электротехники» — 9-е издание, исправленное — Москва: Высшая школа, 1964 — 560 с.

Источник: https://www.electromechanics.ru/electrical-engineering/668-increase-cosine-phi.html

Что такое косинус фи в электрике

Как можно изменить коэффициент мощности всей цепи?

23 августа 2018.
Категория: Освещение.

Допустим, вы купили компрессор для полива растений или электродвигатель для циркулярной пилы. В инструкции по эксплуатации помимо основных технических характеристик (таких, как потребляемый ток, рабочее напряжение, частота вращения) вы можете обнаружить такой непонятный показатель, как косинус фи (cos ϕ).

Данная информация может быть указана и на пластинке (шильдике), закрепленной на корпусе прибора.

В нашей статье мы постараемся объяснить простым и доступным языком  всем, даже пользователям далеким от электротехнических тонкостей, как тригонометрическая функция (знакомая нам со школьной скамьи) влияет на работу всем нам привычных электробытовых приборов, и почему ее называют коэффициентом мощности.

Важно! Все нижесказанное касается только сетей переменного тока.

Далекий от электротехники, но весьма наглядный пример

Чтобы объяснить, каким образом угол ϕ (а точнее его косинус) влияет на мощность, рассмотрим пример, не имеющий никакого отношения к электротехнике. Допустим нам необходимо передвинуть тележку, стоящую на рельсах. Чтобы удобнее было производить данную операцию, к ее передней части прикрепляем канат.

Если мы будем тянуть за веревку прямо вперед по направлению движения, то для перемещения тележки нам понадобится приложить достаточно небольшое усилие. Однако если находиться сбоку от рельсов и тянуть за канат в сторону, то для движения тележки с такой же скоростью необходимо будет приложить значительно большее усилие. Причем чем больше угол (ϕ) между направлением движения и прикладываемым усилием, тем больше «мощности» потребуется от нас.

Вывод! То есть, увеличение угла ϕ ведет к увеличению расходуемой нами энергии (при одной и той же выполненной работе).

Сдвиг фаз между напряжением и током

При использовании энергии переменного тока происходит приблизительно то же самое. При активной нагрузке (например, при включении электрочайника или лампы накаливания) переменные напряжение (U) и ток (I) полностью совпадают по фазе и одновременно достигают своих максимальных значений. В данном случае мощность потребителя электроэнергии можно рассчитать по формуле P=U•I.

Для сети переменного тока работающий электродвигатель, имеющийся, например, в стиральной машине, является комплексной нагрузкой, включающей в себя активную и индуктивную составляющие. При подаче напряжения на такой прибор оно появляется на обмотках, практически, мгновенно. А вот ток (из-за влияния индуктивности) запаздывает. То есть между ними образуется так называемый сдвиг фаз, который мы и называем ϕ.

При активно-емкостной нагрузке, наоборот, переменный ток сразу начинает течь через конденсатор, а напряжение отстает от него по фазе на величину ϕ.

Треугольник мощностей

Коэффициент мощности (PF) – это отношение мощностей: активной полезной (P) к полной (S). Чтобы показать, каким образом сдвиг фаз влияет на PF, используем так называемый треугольник мощностей. И вот тут-то нам и потребуются минимальные знания школьной тригонометрии.

Из теории о прямоугольных треугольниках всем нам известно, что cos ϕ=P/S. То есть, косинус фи — это и есть коэффициент мощности (PF), который показывает, какая часть от полной мощности (S= U•I) фактически необходима для конкретной нагрузки. Чем больше реактивная составляющая Q, тем меньше полезная P. Чтобы вычислить активную мощность необходимо полную S умножить на косинус фи: P= S•cos ϕ.

На заметку! Считать косинус фи абсолютным аналогом коэффициента мощности можно только при том условии, что мы имеем в электрической сети идеальную синусоиду. Для более точного расчета необходимо учитывать нелинейные искажения, которые имеют переменные напряжение и ток. На практике, зачастую коэффициентом нелинейных искажений синусоиды пренебрегают, и значение косинуса фи принимают за приближенное значение коэффициента мощности.

Усредненные значения коэффициента мощности

Лампы накаливания и электрические нагревательные элементы, хотя и имеют в своих конструкциях спирали, намотанные с помощью специального провода, считаются чисто активной нагрузкой для сетей переменного тока. Так как индуктивность этих элементов настолько мала, что ею, как правило, просто пренебрегают. Для таких приборов cos ϕ (или коэффициент мощности) принимают равным 1.

В разнообразных электрических ручных инструментах (дрелях, перфораторах, лобзиках и так далее) индуктивная составляющая мощности достаточно мала. Для них принято считать cos ϕ≈0,96÷0,97. Этот показатель достаточно близок к единице, поэтому его, практически, никогда не указывают в технических характеристиках.

Для мощных электродвигателей, люминесцентных ламп и сварочных трансформаторов cos ϕ≈0,5÷0,82. Этот коэффициент мощности необходимо учитывать, например, при выборе диаметра питающих проводов, чтобы они не нагрелись, и не сгорела их изоляция.

На что влияет низкий коэффициент мощности

К чему могут привести низкие показатели коэффициента мощности:

  • При низком PF возрастает потребляемый нагрузкой ток. cos ϕ=P/S=P/(U•I), следовательно I=P/(U•cos ϕ). Допустим, для конкретной нагрузки необходима активная мощность P=10000 ВА при напряжении U=220 В. В идеальном варианте PF=cos ϕ=1. Тогда ток нагрузки: I=10000/(220•1)≈45 А. При PF=0,8  I=10000/(220•0,8)≈57 А. То есть при снижении PF с 1 до 0,8 ток возрастет приблизительно на 20%. Значит, это приведет к излишним затратам на электроэнергию.
  • Снижение коэффициента мощности, и как следствие увеличение тока приводит к значительным энергетическим потерям в проводах, которые по закону Ома равны I•R², где R – активное сопротивление проводников. Для уменьшения этих потерь приходится увеличивать диаметр проводов, что опять же приводит к излишним экономическим затратам.
  • Вышеуказанные потери расходуются на выделение тепла. В этом случае придется применять более термостойкие, а следовательно, и более дорогие изоляционные материалы).
Читайте также  Где установить духовой шкаф на кухне?

В заключении

Смело можно утверждать, что чем ближе значение PF к единице, тем эффективнее используется электроэнергия. В некоторых мощных приборах производители устанавливают специальные приспособления, которые позволяют осуществлять коррекцию коэффициента мощности.

Источник: https://artillum.ru/lighting/117-prostymi-slovami-o-koeffitsiente-moshchnosti-i-kosinuse-fi.html

Что такое коэффициент мощности

Как можно изменить коэффициент мощности всей цепи?

При проектировании электрических сетей для расчета различных значимых показателей используют коэффициенты. В частности, электрику необходимо знать, что такое коэффициент мощности (косинус фи), с опорой на какие параметры определяют его значение, и в чем его физический смысл.

Фазометр – прибор для определения коэффициента

Что такое коэффициент мощности (косинус фи)

Что такое коэффициент мощности? В электротехнике косинус фи – это параметр, характеризующий потребителя электротока в роли реактивного компонента сетевой нагрузки. Этот показатель, равный косинусу от сдвига фазы относительно прикладываемого напряжения, используется только применительно к переменному току. В случае отставания его от напряжения значение сдвига считается положительным, в обратной ситуации – отрицательным.

Формула коэффициента мощности

Отношение, выражающее коэффициент, считается по следующей формуле:

cos φ f = P/UI,

где Р – усредненная мощность переменного тока, U и I – эффективные показатели, соответственно, напряжения и силы электротока.

Практическое значение

Что такое измерение сопротивления изоляции и почему это важно

В электроэнергетике при проектировании сетей cos коэффициент фи стремятся повысить как можно больше. Соотношение cos угла fi подразумевает, что в случае его малого показателя для обеспечения нужной мощности цепи потребуется использовать электрический ток очень большой силы. Существует корреляция между применением высокого тока и потерями энергии в подводящих кабелях: если показания электросчетчика заметно выше ожидаемых, всегда проверяют правильность расчетов угла фи.

Показатель может быть выяснен с помощью специального прибора – фазометра. При недостаточности коэффициента в дело идут усилители и другие установки, призванные скомпенсировать энергетические потери. Если угол фи рассчитан неправильно, будут иметь место снижение эффективности работы электрооборудования и рост энергопотребления.

Низкий коэффициент мощности, его последствия

Из-за низких значений угла фи возможны следующие неприятные явления:

  • возрастание трат на электроэнергию примерно на 20%;
  • необходимость использовать более толстые провода из-за энергопотерь, что ведет к еще большим потерям;
  • выделение тепла влечет за собой потребность в изоляционных материалах, более стойких к воздействию высоких температур.

Способы расчета

Данный параметр можно представить, как отношение мощностей: полезной нагрузочной и общей. В формульном виде это записывается так:

cos fi = P/S,

где:

  • S (полная мощность) = I*U=√P2¯+¯Q¯2¯;
  • Q (реактивная мощность) = I*U*sin fi.

У асинхронного электродвигателя с тремя фазами можно посчитать коэффициент так:

cos fi=P/(U*I*√3).

Помимо этого, для вычисления показателя можно применять мощностный треугольник.

Единицы измерения

Иногда встает вопрос, в чем измеряется данный коэффициент, если его описывают, как безразмерную величину. Его обычно указывают в процентах или в сотых долях, во втором случае значения находятся в диапазоне от 0 до 1.

Чтобы приборы, подсоединенные к электрической сети, эксплуатировались возможно более долгий срок, необходимо знать, что такое показатель cos f в электричестве, и как его правильно определять. Его значение нужно учитывать в процессе подключения устройств и их дальнейшей эксплуатации.

Источник: https://amperof.ru/teoriya/chto-takoe-koefficient-moshhnosti.html

Коэффициент мощности преобразователя частоты. Способы повышения

Как можно изменить коэффициент мощности всей цепи?

Нет уже надобности лишний раз описывать, что такое экономия электроэнергии, да и энергии вообще, и насколько это плохо. Даже, если это не так плохо на самом деле, как расписывают политики или придворные ученые, в любом случае, зачем жечь лишние киловатты? Зачем пропадать добру? Повышать экономичность энергопотребляющих машин, устройств и приборов – это одна из обязанностей тех, кто их создает.

Электроэнергия неизбежно теряется в процессе передачи от источника к потребителю. это справедливо как для переменного тока, так и для постоянного. Часть активной мощности, на величину падения напряжения сети, бесполезно греет воздух и землю. Эта проблема, насколько возможно, решается оптимальным подбором сечения проводников линий электропередач и повышением напряжения, до тех пор, пока это возможно. На первый взгляд, на этом можно успокоиться. На самом деле не все так просто и вопрос упирается в деньги. Рассмотрим эту ситуацию на примере.

На предприятии нагревают воду и платят по счетчику активной энергии. Продавец, скажем, электростанция, с учетом точно рассчитанных потерь на передачу в линии, смотрит на свой счетчик и видит баланс. Затем предприятие покупает электромоторы и начинает интенсивно использовать их с насосами, что-то качать. Через некоторое время продавец электроэнергии начинает замечать, что ему приходится вырабатывать больше энергии чем он продает за деньги. У клиента все в порядке, пломбы на счетчиках целые. Убедившись, что никто не ворует, обращаются к электротехникам за консультацией.

Те объясняют, что за счет индуктивности электромоторов в цепи появляется реактивный ток (берущийся взаймы) и соответствующая ему мощность. Энергия, запасенная в магнитном поле моторов, по законам физики сохраняется, но не вся она переходит в механическую работу. Потому, что не успевает сделать это вовремя.

И возвращается в цепь обратно. Этот бесполезный ток только зря нагревает провода, и совсем не учитывается счетчиками активной энергии. Что делать? Есть два выхода.

Первый: это скомпенсировать реактивный ток, поставив на подстанции предприятия батареи конденсаторов; и второй: установить счетчик реактивной энергии и брать за нее деньги.

Продавец электроэнергии выбирает второй путь – брать деньги, а кто бы сделал не так? Тогда предприятие, узнав о конденсаторах, делает в них инвестицию и со временем они окупаются, поскольку реактивный счетчик крутит уже не так быстро. Примерно так и было в истории развития промышленной электроэнергетики. “Частный сектор” тогда пользовался еще спиральными электроплитками и лампочками накаливания и платил аккуратно.

Со временем, мощность бытовых приборов в развитых странах сильно выросла. Любой современный бытовой прибор может содержать электромоторы и трансформаторы: холодильник, стиральная машина. Даже блок питания компьютеров содержит элементы, искажающие форму потребляемого тока. А это означает появление реактивного тока и реактивную мощность.

Продавцы энергии снова почувствовали убытки, да и экологи шумят. Но не ставить же в частном секторе и офисах счетчики реактивной энергии! Поэтому высокоразвитые страны, под давлением заинтересованных сторон, выработали обязательные стандарты для всех производителей современного энергопотребляющего оборудования.

Сегодня даже маломощный компьютерный блок питания оснащен корректором коэффициента мощности и его к.п.д. перевалил за 99%.

Полная мощность цепи переменного тока складывается из суммы активной мощности и реактивной мощности. Коэффициент мощности равен отношению активной мощности к полной мощности, следовательно, чем меньше реактивная мощность, тем выше коэффициент мощности.

В общем случае, для несинусоидальных токов и напряжений, их функции необходимо разложить в ряд Фурье и для каждой гармоники мы получим свой коэффициент мощности в виде тригонометрической функции ее фазового угла, а также и свои амплитуды тока и напряжения. Функция синус проще всего раскладывается в ряд Фурье – это и есть сам синус.

Любое преобразование энергии по закону синуса аналогично равномерному круговому движению в механике с центром масс на оси вращения. Это самый экономичный режим.

Энергетиков на предприятиях, да и бытовых потребителей, волнует, главным образом, первая гармоника напряжения сети – 50 Гц, для которой  коэффициент мощности с высокой точностью для практики равен cos φ. Энергетиков крупных энергетических компаний уже интересуют высшие гармоники, потому, что для их компаний это ощутимые рубли, которые проявляются не столько в потере энергии, сколько в помехах управляющей, сигнальной и связной аппаратуре. Обычно интересуются 5, 7 и 11-ми гармониками (это простые числа, осложняющие расчеты). Для их подавления у мощных потребителей используют контуры с последовательным резонансом.

Повышение коэффициента мощности

Кроме упомянутых уже конденсаторов (или дросселей для нагрузки с емкостным характером), коэффициент мощности можно повысить избегая работы мощных двигателей и трансформаторов с недостаточной нагрузкой. Это увеличит “косинус”. Отдельный вопрос – как повысить коэффициент для несинусоидальных токов, то есть, бороться с гармоническими искажениями переменного тока в линии, идущей к поставщику энергии.

Особенно это актуально для небольших потребителей с импульсными источниками питания, а также любого прибора содержащего силовую электронику, например, для преобразователя частоты. Здесь либо можно использовать дроссели, либо активные корректоры мощности. По нынешним временам дроссель – слишком большая роскошь, это много стали и меди.

Активный корректор – это управляемый силовым ключом дроссель, изготовленный из недорогого феррита с небольшим числом витков медного провода.

Электропривод переменного тока

Особенное значение в технике приобретают управляемые приводы переменного тока с использованием асинхронного электродвигателя. Если бы инженер тридцатых годов прошлого века увидел, что теперь вытворяют с помощью этих простых, дешевых и “к сожалению неуправляемых” двигателей, он бы лопнул от зависти.

Единственный способ эффективно изменять скорость вращения такого двигателя – изменять частоту напряжения на нем. В тридцатые годы прошлого века изменять частоту можно было только на электростанции, глядя на язычковый частотомер, в пределах нескольких Гц. Все, что надо было тогда делать – это держать его на номинале, посередине шкалы.

Все остальное было еще в теории.

Частотные преобразователи

Сегодня асинхронным двигателем управляют с помощью преобразователя частоты. Частотный преобразователь прошел определенную историю развития. Сначала использовались тиристорные схемы. Эти схемы имели множество недостатков, которые сдерживали развитие преобразователей, хотя довольно активно применялись, особенно для мощных двигателей. Когда появились MOSFET, а затем и IGBT транзисторы, рынок преобразователей, как принято говорить “взорвался”. Средняя стоимость преобразователя частоты начала падать и сегодня частотник можно купить даже для бытовых целей за несколько тысяч рублей.

К моменту появления IGBT было предложено и испытано множество топологий силовой части и способов управления для преобразователя частоты. Преобразователи делятся на прямые и двухзвенные ДПЧ. Прямые – непосредственно передают энергию к двигателю: например, циклоконвертор, матричный конвертор. Большим недостатком этих преобразователей является значительное число ключей и большая сложность управления ими. Они применялись, в основном, в тиристорную  эпоху.

Двухзвенная схема преобразователя частоты содержит трехфазный инвертор, получающий питание от источника постоянного тока или напряжения. Следовательно, она требует выпрямитель, каковой и является еще одним звеном. Эти преобразователи более перспективные, так как позволяют осуществить рекуперацию на переменном токе, а это, пожалуй, было бы окончательным решением проблемы электропривода. Этот важный вопрос поясняет следующий рисунок:

На рисунке показан инвертор тока. Он питает двигатель и конденсаторы в его цепи. Дроссели в звене постоянного тока ограничивают помехи. Конденсаторы сглаживают пульсации тока ШИМ. Инвертору тока требуется управляемое выпрямляющее звено для регулирования напряжения и управления током в промежуточном звене. В выходном инверторе используются запираемые тиристоры IGCT (Integrated Gate-Commutated Thyristor). Это довольно новый вид приборов, промышленность еще не имеет большого опыта их применения, но разработчики интересуются их возможностями.  IGCT – довольно сложная штука:

так как содержит драйвер непосредственно рядом с прибором. На рисунке показан прижимной вариант. Можно заметить множество конденсаторов на плате – это требуется для повышения быстродействия управляющего электрода. Частота переключения – порядка единиц кГц. Это уже подходит для преобразователя частоты. Инвертор тока может не гасить энергию на тормозных резисторах, а возвращать ее в питающую сеть.

Но наиболее часто используются инверторы напряжения. Их выпрямляющее звено выполняется на диодах, а инвертор – на транзисторах IGBT, зашунтированными диодами, включенными в обратном направлении. Звено постоянного тока содержит конденсаторы и дроссель для сглаживания пульсаций. Инвертор напряжения имеет довольно много вариантов.

Читайте также  Не включается блендер что делать?

Дело в том, что для эффективного регулирования мощных двигателей в звене постоянного тока преобразователя частоты приходится использовать высокое напряжение, а для этого приходится использовать многоуровневые схемы инверторов, чтобы поделить напряжение между приборами и избежать их пробоя. Существуют схемы: трехуровневая, с фиксированной средней точкой; каскадные с большим, чем три, числом уровней; схемы с плавающими конденсаторами.

Большинство продаваемых преобразователей выпускают по простой схеме для трехфазных двигателей малой и средней мощности, работающих в сетях 50-60 Гц 0,4 кВ.

Схема частотного преобразователя помещается в небольшой коробке, размером с обувную, для преобразователей частоты небольшой мощности, а мощные высоковольтные преобразователи для больших двигателей могут занимать несколько металлических шкафов.

Экономия энергии с частотным преобразователем

Использование преобразователя частоты для питания и плавного пуска асинхронного электродвигателя позволяет экономить до от 30 до 60%. Это происходит за счет оптимизации режима работы двигателя с помощью частотного преобразователя. При малой нагрузке можно уменьшить напряжение на двигателе, а управляя частотой выходного напряжения, поддерживать требуемую скорость.

Фильтр в звене постоянного тока частотного преобразователя хорошо справляется с реактивным током на первой гармонике, а остальные могут успешно подавляться фильтрами, включаемыми как в цепи переменного напряжения преобразователя частоты со стороны сети, так и в цепи переменного напряжения после преобразователя, на стороне двигателя.

Способность преобразователя частоты заряжать конденсаторы звена постоянного тока до некоторой степени тоже экономит энергию. Если механизм движется по инерции непродолжительное время, то выходной инвертор может быть использован как выпрямитель и заряжать емкость звена постоянного тока.

Длительно это происходить не может, так как заряд конденсатора ограничен его номинальным напряжением и это как раз величина выходного напряжения инвертора частотного преобразователя в режиме торможения.

  для этих целей в схему преобразователя частоты добавляют тормозной резистор, делается это внешним образом, так как этот резистор будет выделять много тепла и корпус преобразователя частоты может его не выдержать.

Использование преобразователя частоты “из коробки” никак не гарантирует беспроблемность с экономией энергии. Потребитель должен вникнуть в условия эксплуатации каждого экземпляра преобразователя частоты, который он приобрел и устанавливает на своем производстве. В цепи переменного тока для повышения кпд необходимо правильно подбирать мощности двигателя и преобразователя.

Если нагрузка на двигатель не достигает его номинальной мощности, то можно использовать марку преобразователя частоты для двигателя меньшей мощности. Необходимая величина выходного напряжения будет при этом обеспечена, скорость вращения также. Но это не самый экономный вариант для частотного преобразователя. И частотник, и двигатель должны соответствовать по мощности друг другу.

Можно подключать несколько двигателей параллельно, при условии, что они работают в одинаковых условиях и в сумме имеют номинальную мощность как у преобразователя. В этом случае не обязательно покупать преобразователи по отдельности для каждого двигателя.

Коэффициент мощности частотного преобразователя довольно близок к 1, не меньше 0,98 в худшем случае. Вся реактивная мощность двигателя поглощается в звене постоянного тока на любых режимах его работы. Все оставшееся, это только влияние нелинейности выпрямителя. Для мощных двигателей, а значит, и больших токов во входной сети преобразователя, будут заметны импульсные помехи.

Так что коэффициент мощности частотника это вопрос не энергетический, а электромагнитной совместимости. чтобы избавиться от помех, может понадобиться экранирование кабелей или прокладка их в трубах, при заземлении экранов или труб. Важно не нарушать также и те правила заземления, которые указаны в инструкции на каждый преобразователь. Каждый преобразователь должен напрямую соединяться с шиной заземления и никак иначе.

Иначе образуются контуры, которые будут создавать помехи чувствительному оборудованию.

Корректоры коэффициента мощности. PFC. (ч.1)

Источник: http://chistotnik.ru/koefficient-moshhnosti-preobrazovatelya-chastoty.html

Формула коэффициента мощности: косинус фи для потребителей, единица измерения — Искра Газ

Как можно изменить коэффициент мощности всей цепи?

27.02.2020

Мощность в цепи переменного тока и коэффициент мощности (косинус φ) В профессиональном лексиконе электрика наиболее популярны слова: фаза, ток, напряжение и словосочетание «косинус-фи». Этот «косинус-фи» всегда головная боль заводского энергетика.

Попробуем популярно объяснить причину такого уважения электриков к тригонометрической функции cos φ. «Косинус-фи» в электроэнергетике еще называют коэффициентом мощности.

Коэффициент мощности характеризует потребителя электрической энергии с точки зрения наличия в нагрузке реактивной составляющей, при которой переменный ток и напряжение не совпадают по фазе.

Коэффициент мощности показывает, насколько переменный ток в нагрузке сдвигается по фазе относительно напряжения на ней (отстает или опережает). Численно коэффициент мощности равен косинусу этого фазового сдвига.

В электроэнергетике для коэффициента мощности принято обозначение cos φ (где φ — угол сдвига по фазе между током и напряжением). При наличии в нагрузке реактивной составляющей наряду со значением коэффициента мощности часто указывают и характер нагрузки: активно-ёмкостная или активно-индуктивная. Тогда коэффициент мощности называют соответственно опережающим или отстающим.

Мощность в цепи переменного тока

Для начала следует подробно рассмотреть вопрос электрической мощности. В электрической цепи постоянного тока все просто и достаточно понятно. В такой цепи зная напряжение на зажимах потребителя и протекающий ток можем легко определить потребляемую мощность, умножив величину тока на напряжение: В цепи переменного тока формулы для расчета мощности и само понятие мощности несколько сложнее. В общем случае в электрической цепи синусоидального переменного тока изменение напряжения и тока во времени не совпадают. Или другими словами напряжение и ток не совпадают по фазе.

Ток отстает по фазе от напряжения при индуктивной нагрузке, и опережает напряжение при емкостной нагрузке. Только в частном случае, когда нагрузка чисто активная, ток и напряжение совпадает по фазе. В сети переменного тока различают полную, активную и реактивную мощность. Отметим, что само понятие реактивной мощности актуально только для электротехнических устройств переменного тока. Оно никогда не применяется к потребителям постоянного тока в силу малости (мизерности) соответствующих эффектов, проявляющихся кратковременно только при переходных процессах (включении/выключении, регулирование, изменение нагрузки).

Полная мощность в цепи переменного тока (для однофазной нагрузки) равна произведению действующего значения тока на действующее значение напряжения (измеряется в ВА , кВА – вольт-амперах, кило вольт-амперах) Полная мощность представляет практический интерес, как величина, определяющая фактические электрические нагрузки на обмотки, провода, кабели, аппаратуру распределительных щитов, силовые трансформаторы, линии электропередач. Собственно поэтому номинальная мощность генераторов и трансформаторов, нагрузки аппаратов распределительных щитов и пропускная способность линий электропередач указывается в вольт-амперах, а не в ваттах.

Полная мощность состоит из двух составляющих – активной Р, и реактивной Q мощности. Активная мощность это та часть электрической энергии выработанной генератором, которая безвозвратно преобразуется в тепловую (лампы накаливания, электроплиты, электропечи сопротивления, потери в трансформаторах и линиях электропередачи) или в механическую (электрические двигатели) энергию. Активная мощность измеряется в Вт, кВт (ватт, киловатт).

Активную мощность можно определить по следующей формуле (для однофазной нагрузки): Вот здесь и появляется знаменитый cos φ Если ток совпадает по фазе с приложенным напряжением то угол φ = 0, и соответственно cos φ =1. Для электрической сети это оптимальный вариант. В этом случае полная мощность равна активной мощности и вся электрическая энергия в нагрузке превращается в другие виды энергии. Например, в электрочайнике – в тепловую энергию.

Чаще потребители электрической энергии имеют обмотки и магнитопроводы (электрические двигатели, трансформаторы, дроссели газорязрядных ламп, пускатели и реле) необходимые для их нормальной работы. В общем случае такая нагрузка называется индуктивной. При чисто индуктивной нагрузке ток отстает от напряжения на угол φ = 90О , при котором cos φ = 0 и активная мощность также P = 0. Для характеристики таких потребителей в электротехнике введено понятие реактивной мощности: Реактивная мощность измеряется в Вар, кВАр (вольт-амперах реактивных, кило вольт-амперах реактивных).

Кстати, реактивную мощность можно измерить с помощью счетчика реактивной энергии, также как и активную счетчиком активной энергии. Названа мощность реактивной совсем не по аналогии с «ракетой»!!. Мы помним, что в физике термин «реактивный» обычно употребляется как связанный с возникновением движения под действием силы отдачи струи пара, газа и т. п., вытекающей с большой скоростью в противоположную силе отдачи сторону.

В электротехнике это элемент электрической цепи, обладающий индуктивностью и/или электрической ёмкостью, и термин реактивный употребляется для характеристики элемента электрической цепи, обладающего этими свойствами. Источниками реактивной мощности в сети переменного тока являются катушки индуктивности и конденсаторы. Физически реактивная мощность, это мощность, которая накапливается в электрических и магнитных полях.

При наличии в сети индуктивности и, например, статического конденсатора электромагнитная энергия в один полупериод изменения тока накапливается в электромагнитном поле катушки индуктивности, в следующий полупериод возвращается конденсатору, где накапливается в его электрическом поле, а затем возвращается обратно к индуктивности. Следует понимать, что реактивная мощность не расходуется на выполнение работы электротехнического устройства (нагрев, выполнение механической работы) но она необходима для его нормальной работы.

Так в трансформаторе электрическая энергия передается с первичной обмотки во вторичную цепь посредством электромагнитного поля, для создания которого и необходима реактивная мощность. Преобразование электрической энергии в асинхронном электродвигателе осуществляется с помощь того же электромагнитного поля, и снова для его создания также требуется источник реактивной мощности. На генерацию активной мощности расходуются первичные энергоресурсы – газ, мазут, уголь, энергия ветра или падающей воды.

Поскольку каждые полпериода переменного тока накопленная в магнитном поле реактивная энергия отдается обратно в источник (синхронный генератор, конденсатор) то в идеале на генерацию реактивной мощности не требуется расход первичного энергоносителя. Однако при более глубоком рассмотрении оказывается, что реактивная энергия не такая уж безобидная. На генерацию реактивной мощности все- таки требуется расходовать некоторое количество первичного энергоносителя для покрытия механических и электрических потерь в генераторах, диэлектрических потерь в конденсаторах.

Кроме того при передаче реактивной энергии в линиях и трансформаторах возникают потери на нагрев. Еще одна неприятность состоит в том, что генерация и передача реактивной энергии требует увеличения установленной мощности генераторов, увеличения сечения проводов и мощности трансформаторов, т. е. связана с большими экономическими затратами. В энергетической системе источниками реактивной мощности могут быть синхронные генераторы, синхронные компенсаторы, перевозбужденные синхронные двигатели и конденсаторы. Решение о способе компенсации реактивной мощности всегда необходимо принимать на основе технико–экономического анализа.

Большинство потребителей электрической энергии имеют обмотки на магнитопроводах, т.е. представляют собой индуктивность. Чисто условно принято говорить, что они потребляют положительную реактивную мощность. Реактивная мощность статических конденсаторов отрицательна и принято говорить, что они генерируют реактивную мощность. Синхронные генераторы в зависимости от величины тока возбуждения могут, как производить, так и потреблять реактивную мощность. Т.е. ведут себя относительно электрической сети как емкость или как индуктивность. То же можно сказать и о синхронных двигателях и синхронных компенсаторах. Впрочем, есть класс синхронных машин – реактивные машины, которые такой способностью не обладают. Численное значение коэффициента мощности электроустановок переменного тока может находится в диапазоне от 0,05-0,1 для трансформаторов в режиме холостого хода до 1,0 для нагревательных электроприборов и ламп накаливания. Коэффициент мощности асинхронных электродвигателей при номинальной нагрузке может быть 0,7 – 0,9 и зависит от номинальной мощности, конструктивного исполнения, а также числа полюсов. Маломощные и тихоходные (многополюсные) двигатели отличаются пониженным значением cos φ . С уменьшением загрузки двигателей и трансформаторов их cos φ также значительно уменьшается.

Читайте также  Лампочка сигнализации горит постоянно что делать?

Измерение коэффициента мощности

Для прямого измерения cos φ и фазы применяются специальные электроизмерительные приборы — фазометры. При отсутствии таких приборов коэффициент мощности можно определить косвенным методом по показаниям трех приборов :амперметра, вольтметра и ваттметра.

Тогда в однофазной цепи cos φ = P / (U х I), где Р, U, I — показания ваттметра, вольтметра и амперметра, соответственно. В симметричной трехфазной цепи cos φ = Pw / (√3 х Uл х Iл); где Pw – активная мощность трехфазной системы, Uл, Iл – соответственно линейные напряжение и ток.

В симметричной трехфазной цепи значение коэффициента мощности можно определить также по показаниям двух ваттметров Pw1 и Pw2 по формуле

Коэффициент мощности величина не постоянная, он зависит от характера и величины нагрузки. Для асинхронного двигателя изменение нагрузки от нуля до номинальной приводит к изменению cos φ от 0,1 на холостом ходу до 0,86 — 0,87 при номинальной нагрузке. Для практических целей расчета мощности компенсирующих устройств в электрических сетях используют средневзвешенный коэффициент мощности за некоторый интервал времени — сутки или месяц. Для этого за рассматриваемый период снимают показания счетчиков активной и реактивной энергии Wa и Wр и расчитывают средневзвешенный коэффициент мощности по формуле

Компенсация реактивной мощности

Для уменьшения потерь, устранения перегрузок трансформаторов и линий электропередач прибегают к искусственному повышению коэффициента мощности электрических установок путем компенсации реактивной мощности непосредственно у потребителей с помощью батарей статических конденсаторов.

Энергетическая диаграмма, иллюстрирующая передачу электрической энергии между генератором Г и потребителем Д, потребляющим активную и реактивную энергию. а) — при отсутствии компенсатора, б) — при наличии его (батарея статических конденсаторов С) . Синим цветом показано поток активной энергии, красным – реактивной. Добавлять комментарии могут только зарегистрированные пользователи.[ Регистрация | Вход ]

Последние ответы на форуме ukrelektrik.com

Заземление, зануление rashpilek1975 Alexzhuk / 37 Электроотопление IusCoin Multiki / 68 Всё обо всём — общение 2alpilip Наде4ка / 29

Источник:

Что такое «коэффициент мощности»?

Что такое «коэффициент мощности»?

Вадим Дубинский и Анатолий Савельев

Вадим Дубинский, РЕДАКТОР И ИНЖЕНЕР FLUKE CISАнатолий Савельев, соавтор и инженер продаж TDK03 сентября 2019 Статья разработана в соавторстве с TDK Corporation.

Счета за электроэнергию составляют заметную долю в текущих расходах любого предприятия или объекта коммерческой недвижимости. Добавьте к этому риски простоев и дорогостоящего ремонта, связанные с перегрузкой сети, и станет понятно, почему вопросы обеспечения качества электроэнергии требуют значительного внимания.

Одной из проблем качества электроэнергии, которые потребители электроэнергии наиболее часто называют главной для своего объекта, является реактивная мощность (коэффициент мощности). Повышение К М означает снижение величины реактивной мощности (и тока), что увеличивает эффективность за счет:

  • экономии на счетах за электроэнергию (многие промышленные предприятия оплачивают активную и реактивную мощности);
  • экономии на штрафах за низкий КМ;
  • снижения нагрузки на питающие трансформаторы, линии электропередачи и распределительные устройства, что позволяет снизить затраты на их приобретение (можно использовать меньший номинал);
  • выигрыша в активной мощности от использующегося источника;
  • увеличения срока службы машин и оборудования, сокращения простоев благодаря снижению нагрузки…

Что такое «коэффициент мощности»? Сначала мы рассмотрим более простой случай. При присутствии в цепи только основной частоты (50 Гц), энергия выражается в виде активной, реактивной и полной мощности.

Действительная (P) или активная мощность измеряется в ваттах (Вт). Это та часть мощности, которая нужна для выполнения работы. P=UIcosϕ.

Источник: https://istra-gaz.ru/osveshhenie/formula-koeffitsienta-moshhnosti-kosinus-fi-dlya-potrebitelej-edinitsa-izmereniya.html

Что такое коэффициент мощности и его влияние на сеть переменного тока

Как можно изменить коэффициент мощности всей цепи?

Площадь поперечного сечения кабеля линии электропередач, обмоток электрической машины и трансформатора, а также других электротехнических аппаратов и приборов выбираются исходя из значения тока (проверка на нагрев), протекающего в проводнике.

Каждая электроустановка имеет свое номинальное напряжение, которое нельзя не превышать, ни занижать, для нормальной ее работы. Соответственно значения тока будет прямо пропорционально значению полной мощности S.

Энергия, которая преобразуется из электрической в другие ее виды (тепловую, механическую и другие) и используется для выполнения полезной работы, будет пропорциональна активной энергии и соответствующей ей активной мощности Р.

Известно, что между мощностями переменного напряжения существует определенная зависимость:

Входящий в первое выражение cos φ имеет название коэффициент мощности. Он показывает, какую часть от полной мощности S будет составлять активная мощность Р:

Предположим, что Р электроустановки, значение которой в основном зависит от мощности электроприемников, величина постоянная. Теперь выясним, к чему приведет изменения коэффициента мощности cos φ.

Из приведенных выше формул следует, что при увеличении cos φ будет снижаться S. При этом Р = const. Из чего следует, что данное явление может происходить только за счет снижения реактивной мощности Q. Уменьшение S приводит к снижению линейного тока Iл. Снижение Iл повлечет за собой снижение потерь в ЛЭП, обмотках трансформаторов и электрических машин, а также другого электрооборудования.

Также отсюда выплывает и следующий вывод, раз значение линейного тока Iл снижается, то возможно уменьшение поперечного сечения токоведущих частей. В отношении трансформаторов и электродвигателей данное явление влечет за собой снижение веса, габаритов, стоимости.

В действующей электроустановке повышение коэффициента мощности позволит увеличить количество электроприемников при существующих площадях поперечного сечения, которые могут быть подключены к данной сети.

Как видим, повышение cos φ положительно скажется на работе электрической цепи переменного напряжения.

Известно, что большая часть электроприемников переменного тока потребляет помимо активной еще и индуктивную (реактивную) мощность. И самый главный потребитель – асинхронный электродвигатель. Значительную часть потребляют и трансформаторы, применяемые в различных установках. Индуктивная мощность потребляется и электрическими аппаратами, такими как магнитные пускатели, реле, контакторы, электромагниты и прочие.

Для уменьшения реактивной мощности рекомендовано:

  • Не завышать мощность асинхронных электродвигателей;
  • Избегать недогрузки электродвигателей;
  • Максимально сокращать время работы трансформаторов и электродвигателей в режиме холостого хода;

Но довольно часто коэффициент мощности оказывается недостаточно высоким в промышленных электросетях, даже не смотря на предпринятые выше меры. Для его повышения прибегают к подключению к электросети специальных компенсирующих устройств, таких как конденсаторные батареи, тиристорные компенсаторы и синхронные компенасторы. Последние в настоящее время практически нигде не применяются и активно модернизируются на тиристорные компенсаторы. Батареи конденсаторов обычно соединяют в треугольник, как показано на рисунке ниже:

При подключении компенсирующего устройства общий cos φ сети повышается, но у электроприемников он остается прежним. Чтобы максимально снизить сечение токоведущих частей от подстанции к электроприемнику, компенсирующие устройства стараются разместить как можно ближе к потребителю.

Рассмотрим небольшой пример

К трехфазной сети (рисунок выше) с линейным напряжением Uл = 220 В подключены два трехфазных электроприемника. У первого потребителя электроэнергии известно Р1 =  10 кВт и cos φ = 0,7. У второго rф = 6 Ом, ХLФ = 8 Ом. Нагрузка симметричная.

Необходимо определить мощности, токи, cos φ электроустановки из двух приемников. Найти емкость, токи и мощность батареи конденсаторов для поддержания cos φ = 0,95. Определить токи и мощности электроустановки из двух электроприемников и батареи конденсаторов.

Решение

Для первого электроприемника:

Полное сопротивление и ток фазы второго приемника:

Отсюда следует:

Теперь можем вычислить мощности всей электроустановки:

Линейный ток и cos φ электроустановки из двух потребителей электроэнергии:

Мощность электроустановки, состоящей из электроприемников и конденсаторной батареи:

Линейные токи электроустановки и батареи конденсаторов:

Фазные токи и сопротивление фазы батареи конденсаторов:

Емкость одной фазы и всей конденсаторной батареи:

Источник: https://elenergi.ru/chto-takoe-koefficient-moshhnosti-i-ego-vliyanie-na-set-peremennogo-toka.html

Реактивная мощность на ощупь, простым языком, без графиков

Как можно изменить коэффициент мощности всей цепи?

Сегодня я постараюсь объяснить простым языком, что же такое реактивная мощность электрической энергии.

Активная мощность

Для начала, расскажу про наиболее привычную нам активную мощность, за которую мы, собственно, и платим по счётчику. Эта мощность, потребляемая нагрузкой типа обычного сопротивления. Как правило, это все нагревательные приборы (бойлеры, обычные электроплитки, электро калориферы и т.п.). Потребляемая мощность этих приборов полностью активная. В этих приборах электрическая энергия безвозвратно и полностью преобразуется в другой вид энергии (тепловую и другие).

Активная мощность обозначается буквой P и измеряется в ваттах (Вт).

Величина активной мощности, потребляемой такими приборами считается просто — умножением напряжения в розетке на ток, протекающей в цепи включенного нагревательного прибора:

P = U * I

Тут всё просто. Нагрузка пассивна, постоянна, никаких неожиданностей.

Замечу, что в цепях постоянного тока существует только активная мощность, поскольку значение мгновенной и средней мощности там совпадают.

Реактивная мощность

Если включить в сеть переменного тока не нагревательный прибор, а, например, электромагнит, то помимо активной, в цепи возникает реактивная энергия, которая с частотой переменного тока то потребляется прибором, то возвращается обратно в сеть. Эта энергия переносится от источника к электромагниту и обратно дважды за период, каждую четверть периода меняя направление.

Это происходит из-за того, что при потреблении электроэнергии, например, обмоткой магнита, каждый полупериод в нём происходит временное запасание энергии в магнитном поле катушки, и последующая отдача её назад, из-за чего происходит рассинхронизация синусоид величин напряжения и тока в сети.

Изменения тока в цепи отстаёт от соответствующих синусоидальных изменений напряжения. Такое поведение присуще любой т.н. индуктивной нагрузке (трансформаторы, электродвигатели, дроссели, электромагниты).

Помимо индуктивной нагрузки существует емкостная (различные электронные устройства с конденсаторами, как накопителями энергии, например, в импульсном блоке питания), в которой ток, наоборот, опережает напряжение за счёт временного накопления энергии конденсаторами и последующей отдачи её назад. И в том и в другом случае в цепи помимо активной возникает реактивная энергия.

Вред реактивной энергии в электроэнергетике очевиден — она никак не используется, но шляется туда-сюда по проводам, дополнительно нагружая их. Кроме того, при таком «шлянии» эта энергия ещё и частично теряется, преобразуясь в активную энергию при нагреве проводов. Однако в радиотехнике реактивная мощность может быть и полезной (например, в колебательных контурах).

Реактивная мощность обозначается буквой Q и измеряется в вольт-амперах реактивных (вар).

Для вычисления доли реактивной мощности применяется формула:

Q = U * I * sin φ, где:
sin φ — коэффициент мощности, показывающий, какую долю полной мощности составляет реактивная мощность.

Для вычисления активной мощности в сетях с реактивной составляющей применяется формула:

P = U * I * cos φ, где:
cos φ — коэффициент мощности, показывающий, какую долю полной мощности составляет активная мощность.

Коэффициенты мощностей разных приборов обычно указываются в паспортах на них.

Неактивная мощность

Неактивная мощность (пассивная мощность) — это вся мощность кроме активной, т.е. как реактивная мощность, так и мощность любых нелинейных искажений синусоиды, в том числе и мощность колебаний в колебаниях (высших гармоник).

Неактивная мощность обозначается буквой N и измеряется в вольт-амперах реактивных (вар).

Нелинейные искажения могут быть вызваны такой нелинейной нагрузкой, как, например, импульсные блоки питания без корректора коэффициента мощности.

Полная мощность

Полная мощность — эта вся мощность, и активная и неактивная.

Полная мощность обозначается буквой S и измеряется в вольт-амперах (ВА).

Полная мощность равна корню квадратному из суммы квадратов активной и неактивной мощности:

S = √(P² + N²)

В случае линейной (равномерной на протяжении периода) нагрузки полная мощность равна корню квадратному из суммы квадратов активной и реактивной мощности. В этом случае неактивная мощность полностью состоит из реактивной составляющей.

S = √(P² + Q²)

То есть, полная мощность получается не лобовым сложением активной и неактивной частей, а по закону прямоугольного треугольника:

Надеюсь, я немного прояснил данный вопрос.

Если тема всё ещё непонятна, почитайте мою новую статью, где я более тщательно расписал физику процесса.

Ставьте лайки, если статья понравилось. Пишите комментарии.Делитесь также этой статьёй в социальных сетях (соответствующие кнопочки рядом со статьёй в наличии) и, конечно, подписывайтесь на мой канал! Жду ваших отзывов! Удачи!

Источник: https://zen.yandex.ru/media/id/5c82f2859f10fe00b573124d/5da5c904bc251465cd7984b4