Содержание
Как выбирают сторону направления электрического тока в цепи
1001student.ru > Физика > Как выбирают сторону направления электрического тока в цепи
Ток образуется при определённом перемещении частиц. Традиционно за них принимают электроны и ионы. Но на самом деле всё гораздо сложнее. В движении участвуют как положительные носители зарядов, так и отрицательные, поэтому, чтобы было удобно исследовать процессы, за направление электрического тока взяли изменение положения плюсовых частиц. Другими словами, учёные договорились, что он течёт по проводнику от «плюса» к «минусу».
Общие сведения
Скалярная физическая величина, позволяющая телу излучать электромагнитное поле, называется зарядом. Он не может существовать сам по себе без носителей. В качестве их принимаются подвижные частицы или квазичастицы. Именно они обеспечивают возникновение электрического тока. Например, в качестве их может выступать электрон, ион, дырка или позитрон.
За единицу измерения электрического заряда принят кулон (Кл). Фактически он показывает, сколько прошло через поперечное сечение элементарных частиц. При этом ток принимают равный одному амперу, а время одной секунде. Несмотря на то что в замкнутой системе могут появляться новые частицы, обладающие зарядом, их общее число всегда остаётся постоянным. Если одни рождаются, то другие уничтожаются. Эта закономерность установлена была в 1843 году Фарадеем и известна как закон сохранения электрического заряда.
В любом физическом теле имеются носители зарядов. Если на них не оказывается взаимодействие, наступает так называемый электронный баланс: энергия находится на постоянном уровне. Когда движение частиц происходит хаотично, она поглощается и выделяется в равных частях. Но если к телу приложена внешняя сила, которая заставляет двигаться заряды в одном направлении, возникает электрический ток.
Поток частиц может быть двух видов:
- Переменный — характеризуется изменением значения и направления во времени. Течение зарядов изменяется по определённому закону. Чаще всего это синусоидальная функция. Если выполнить измерение, можно увидеть, что ток будет непрерывно изменять направление.
- Постоянный — при его возникновении направление движение носителей заряда не изменяется или смена выражена слабо. В последнем случае ток считают пульсирующим. Фактически это периодический электрический ток, у которого среднее значение за период отлично от нуля. Получается он при выпрямлении переменного.
Количественной характеристикой направленного потока является сила. Её определяют, как количество заряженных частиц, пройденное через поперечное сечение за единицу времени. Вокруг каждого носителя существует электрическое поле. Оно описывается с помощью напряжения, величина которого находится как разность потенциалов. Это характеристика, которая показывает изменение заряд при переходе частицы из одного положения в другое.
Электрический ток в веществах
Направленное движение частиц может возникнуть в разных физических телах вне зависимости от их агрегатного состояния. Способность вещества пропускать через себя ток определяется проводимостью. Это параметр характеризуется числом свободных носителей, которые участвуют в переносе заряда.
В зависимости от своих физических свойств, все существующие тела можно разделить на следующие виды:
- Проводники — твёрдые вещества, имеющие достаточное количество свободных электронов, которые и являются источником тока. Основными носителями в них являются электроны. К ним относятся все металлы.
- Диэлектрики — материалы с большой величиной удельного сопротивления, в них практически невозможно создать ток.
- Полупроводники — по проводимости занимают промежуточное место между проводниками и диэлектриками. Их характеристики сильно зависят от температуры и степени примесей в кристаллической решётке.
- Электролиты — жидкости, способные пропускать электрический ток. Как пример, можно привести водные растворы кислот, щелочей, солей. При взаимодействии с водой молекулы веществ распадаются на ионы. Они, в свою очередь, образуют отдельные атомы или группы. Эти образования обладают положительным зарядом (катионы) или отрицательным (анионы).
- Газы и плазма — ток в них создаётся за счёт перемещения электронов и положительных ионов.
- Вакуум — основные носители электроны. Чтобы они появились, в среду вводят металлические электроды.
Таким образом, в веществах токи возникают в результате упорядоченного изменения положения заряженных частиц относительно той или иной среды. Этот процесс называют возникновением тока проводимости. Но вместе с этим существует и движение макроскопических заряженных тел — конвекционное. Примером такого вида тока могут служить капли дождя во время грома.
https://www.youtube.com/watch?v=bR_cJDOMjxo
Атомы проводников прочно сидят в кристаллической решётке, поэтому свободно двигаться могут только электроны, не имеющие связей. Частицы же газов и жидкостей могут перемещаться, так как не имеют прочных связей, поэтому носителями зарядов будут как ионы, так и электроны. Их дрейфовая скорость определяется типом материала проводника, массой, окружающей температурой и приложенной разностью потенциалов.
Направление движения
Скорость распространения электричества по проводникам очень высока. По заверениям учёных, она приближается к значению, равному распространению света. Но эта скорость не определяет движение самих зарядов. Всё дело в том, что в замкнутой цепи под действием внешней силы свободные частицы взаимодействуют по всей длине тела, поэтому скорость распространения зарядов имеет своё название — дрейфовая.
В какую сторону направлено перемещение положительных зарядов, ту и принимают за направление электрического тока. Но известно, что в металлах электроны выступают как носители, поэтому выбор направления был принят условно. Физики договорились, что ток направлен от плюса к минусу. Это было связано с опытами Франклина, разрабатывающего свою жидкостную теорию. Он увидел, что перетекание в сообщающих сосудах происходит из большей ёмкости в меньшую, то есть из более электризованного места в меньшее.
Например, в полупроводнике можно представить себе цепочку атомов, в которой появился положительный ион. За счёт действия поля произойдёт перемещение электрона от атома, стоящего после частицы к нему. Затем по цепочке носитель заряда начнёт переходить от третьего атома ко второму иону, от четвёртого к третьему. Значит, в полупроводнике ток течёт против поля. Перенос зарядов от атомов, заряженных нейтрально, происходит за счёт движения электронов против действия силовых линий и дырок, совпадающих с ними по направлению.
Свободный электрон, встречаясь с дыркой, образует положительный ион. Этот процесс называют рекомбинацией. В идеальном проводнике примесей нет, поэтому уничтожение дырок и электронов не происходит. Число положительных и отрицательных частиц одинаково. Но в природе таких материалов нет, а изготовить их такого качества довольно трудно и дорого.
Свойства веществ изменяются в зависимости от типов примеси. Дырочный механизм может вовсе отсутствовать, а ток будет идти только за счёт свободных электронов. Такие материалы называют электронными. В ином же случае — дырочными. Например, при соединении металла с полупроводником ток может течь как от первого материала ко второму, так и обратно. Это связано с тем, что в электронном полупроводнике из-за избытка отрицательных частиц происходит их диффундирование в металл, а в дырочном — наоборот.
История принятия направления
Французский экспериментатор Шарль Франсуа Дюфе, проводя опыты с электризацией путём натирания эбонитовой палочки, смог определить, что заряжалось не только тело, но и непосредственно эбонит. При этом возникающий заряд нейтрализовался. Таким образом, было установлено, что существуют 2 вида зарядов, одновременно находящихся в электромагнитном поле.
Позже этот эффект подтвердил и Роберт Симмер. Физик родом из Шотландии одевал 2 пары чулок. Первые были с утеплением, а вторые шёлковые. Снимая сразу с ноги оба чулка, он обратил внимание, что если их потом выдёргивать один из одного они изменяют форму. Сначала колготы раздувались, а позже резко слипались. При этом если чулки были изготовлены из однородного материала, например, шерсти, они отталкивались друг от друга.
Эти наблюдения привели учёного к выводу, что в каждом теле содержится не 1, а 2 вида материи в одинаковом количестве. При взаимодействии веществ какая-то её часть может перейти к другой. В результате в одном станет избыточное содержание каких-то зарядов, а в другом их недостаток. Оба материала станут наэлектризованными и противоположными по знаку.
В 1779 Вольт создал столб, генерирующий электричество. Это был один из первых источников тока. С его помощью удалось исследовать электролиз. В итоге учёный смог подтвердить, что в жидкостях существует 2 противоположно заряженных потока частиц. Так было достоверно установлено, каким будет путь движения электрического тока.
Увидеть, куда условно течёт ток, можно экспериментально. Этот опыт часто показывают в седьмом классе на физике. Для него понадобится:
- полиэтилен;
- 2 электрометра;
- проволока.
С помощью проводника нужно соединить электрометры и, потерев полиэтилен, поднести его к устройствам. На обеих шкалах измерителей стрелка отклонится в одну сторону. Это говорит, что заряды одного знака скопились в первом устройстве, а другого во втором. Произошло перемещение как одного знака зарядов, так и другого.
Через 30 лет Ампер предложил для удобства описания экспериментов выбрать, каково же будет направление тока. За него было решено принять движение положительно заряженной частицы. С тех пор предложенное физиками положение об условном направлении было принято повсюду, и не изменилось до сих пор. Даже несмотря на то, что в вакууме перемещаются только отрицательно заряженные электроны, всё равно направление тока выбирается от плюса к минусу.
Источник: https://1001student.ru/fizika/kak-vybirayut-storonu-napravleniya-elektricheskogo-toka-v-tsepi.html
Как течет ток
Электрический ток – одно из основных благ цивилизации, без которого жизнь современного человечества была бы невозможна.
Применяемый во всех областях современного мира (от простого электрочайника, встречающегося на кухни почти любой домохозяйки до мощной дуговой электроплавильной печи) он делает жизнь людей более удобной и простой.
В то же самое время очень мало из тех, кто пользуется многочисленными электроприборами, задумывается над природой данного явления. В частности, не все понимают, что оно собой представляет, на протекании каких процессов основывается, какое направление течения заряженных частиц в проводниках и электрических цепях.
Движение зарядов в проводнике
Для того чтобы разобраться в том, как течет ток, необходимо понять его физическую сущность, основанную на атомарно-молекулярной теории строения материи, узнать, какие условия необходимы для его возникновения и существования, какие виды токов бывают, и какими характеристиками они обладают.
Физическая сущность течения тока в цепи
Наличие тока в цепи обусловлено направленным перемещением заряженных частиц. В твердых телах течение тока создается движением отрицательно заряженных электронов, в газах и жидкостях – положительными ионами. В таких широко распространенных веществах, как полупроводники, электрический ток возникает при движении частиц – электронов и «дырок» (положительно заряженных частиц, представляющих собой атомы с недостающим количеством электронов на внешних уровнях).
Основными условиями возникновения и существования электрического тока являются:
- Наличие носителей зарядов – перемещающиеся по проводнику, газу или электролиту частицы;
- Создаваемое определенным источником питания электрическое поле – без данного силового поля движение свободных носителей зарядов будет хаотичным, не имеющим определенного направления;
- Замкнутая цепь – направленное движение зарядов возможно только в замкнутых цепях. Так, например, состоящий из источника питания ключа (переключатель) и лампочки накаливания ток будет протекать только тогда, когда ключ, располагающийся в разрыве проводника между одним из полюсов питания и лампой, находится во включенном состоянии, позволяя носителям заряда перемещаться по замкнутой цепи от отрицательного полюса батареи к положительному.
Электрический ток и поток электронов
Единица измерения силы тока
Разобравшись в том, что в большинстве случаев носителями электрических зарядов являются электроны, необходимо понять, почему они движутся. Для этого необходимо заглянуть в микромир частиц – атомов и понять их строение, физические процессы, происходящие с ними.
Атом состоит из ядра и вращающихся вокруг него множества электронов, количество которых зависит от суммарного заряда ядра. Электроны передвигаются по определенным траекториям – орбиталям (уровням). При этом те из них, которые располагаются ближе всего к ядру, удерживаются им очень сильно и не участвуют в химических реакциях и физических процессах. Те частицы, которые находятся на внешних уровнях, являются активными и определяющими способность того или иного атома к химическому взаимодействию и образованию свободных зарядов. Их называют валентными.
https://www.youtube.com/watch?v=LzqkLKOyid8
Активность и способность атомов к отщеплению свободных электронов зависят от количества частиц на внешних уровнях. Так, у одних веществ многочисленные электроны удалены от ядра, поэтому срываются со своих орбиталей и начинают устремляться к другим атомам, в результате чего наблюдается перемещение свободных зарядов. При подаче электрических потенциалов (напряжения) движение электронов становится направленным, появляется электрический ток. Поэтому твердые тела (например, металлы) с большим количеством свободных электронов являются проводниками.
У диалектиков частицы, способные переносить электрический заряд, отсутствуют – у них мало электронов на внешних уровнях, поэтому они не могут срываться, переходя сначала в хаотичное, потом и в направленное движение.
Промежуточное положение между диэлектриками и проводниками занимают полупроводники, электропроводность которых зависит от внешних факторов (температуры, освещенности и т.д.).
Электрический ток в параллельной цепи
Закон Ома для неоднородного участка
В электрических схемах предусмотрены параллельные и последовательные соединения элементов. При параллельном соединении, например, резисторов, напряжение одинаково для каждого из них, а сила тока, протекающего через каждый элемент, пропорциональна его сопротивлению. Чтобы определить величину тока через каждый компонент при параллельной комбинации их соединения, используют закон Ома.
Параллельная электрическая цепь
Вид цепи и напряжение
В зависимости от направления протекания тока и особенностей напряжения, различают два вида электрических цепей:
- Цепи постоянного тока;
- Цепи переменного тока.
Напряжение цепей постоянного тока является работой, совершаемой электрическим полем в ходе перемещения пробного плюсового заряда из точки A в точку Б. Напряжение в цепи постоянного тока определяется как разность потенциалов на его концах. В таких цепях принято считать, что ток идет от плюса к минусу (от плюсового полюса к минусовому).
На заметку. В реальности ток течет не от плюса к минусу, а, наоборот, от минуса к плюсу. Сформировавшееся ошибочное представление о направлении течения именно от плюса не стали изменять и оставили для удобства понимания физической сущности данного явления.
Для цепей переменного тока характерны такие виды и значения напряжения, как:
- мгновенное;
- амплитудное;
- среднее значение;
- среднеквадратическое;
- средневыпрямленное.
Напряжение в таких цепях – это достаточно сложная функция времени. Грубо говоря, ток в них течет от фазного провода, проходит через нагрузку и частично уходит в нулевой (течет от фазы к нулю)
Виды токов: постоянные и переменные
В зависимости от изменения направления протекания заряженных частиц, различают следующие виды токов:
- Постоянный – формируется движением заряженных частиц в одном направлении. Его основные характеристики (сила тока, напряжение) имеют постоянные значения и не изменяются во времени;
- Переменный – направление перемещения зарядов при таком виде движения заряженных частиц периодически меняется. Количество изменений направления движения за единицу времени, равную одной секунде, называется частотой тока и измеряется в Герцах. Так, например, значение данной характеристики в обычной бытовой электрической цепи равно 50 Гц. Это означает, что в течение 1 секунды движущиеся по цепи электроны меняют свое направление 50 раз, вызывая тем самым такое же количество изменений напряжения в фазном проводе от 220 до 0 В.
Основные характеристики переменного тока
Двунаправленное перемещение зарядов
Наряду с упорядоченным движением носителей зарядов (электронов), в проводниках наблюдается также незначительный обратный процесс – условное перемещение положительных зарядов, потерявших отрицательные частицы атомов. Вместе с основным током данное явление получило название двунаправленное перемещение зарядов. Особенно оно ярко проявляется при протекании электричества через электролиты (явление электролиза).
Двунаправленное перемещение зарядов в аккумуляторной батарее
Значение перемещения электронов в электрической схеме
Понимание того, как идет в цепи ток, необходимо при составлении такого графического изображения расположения электронных деталей, как схема. Важно понимать, откуда течет ток, для того чтобы правильно располагать на схеме, затем соединять различные радиоэлектронные элементы. Если для таких радиодеталей, как конденсатор, резистор, полярность подключения не имеет значения, то полупроводниковый транзистор,
диод необходимо размещать на схеме и затем запитывать, учитывая направление движения тока, иначе они и собираемое с их использованием устройство, электронный блок не будут правильно функционировать.
Таким образом, знание физической сущности направления течения заряженных частиц в проводнике, электролите, полупроводнике позволит любому человеку не только расширить свой кругозор, но и применять его на практике при монтаже электропроводки, пайке различных электронных блоков и схем. Также подобная информация поможет разобраться в том, почему произошла поломка того или иного электроприбора, как ее устранить и предотвратить в будущем.
Источник: https://amperof.ru/teoriya/kak-techet-tok.html
Замкнутая и разомкнутая электрическая цепь
Определение 1
Электрической цепью называют совокупность различных устройств, которые соединены конкретным способом. Устройства должны обеспечивать путь для протекания электрического тока. Существуют различные элементы цепей, служащие для множества целей. Для описания цепей используют специальные электрические схемы.
В состав любой электрической цепи входят различные элементы:
- Источник тока. Им, например, может быть катушка индуктивности, по которой какое-то время шёл ток внешнего источника.
- Проводники;
- Нагрузка (в случае, когда она постоянна, вольтамперная характеристическая кривая представляет собой прямую линию, а такая нагрузка зовётся линейной;
- Устройства защиты;
- Устройства коммутации.
Различают два вида элементов цепей: пассивные и активные. Пассивные представляют собой соединительные элементы и приборы-потребители электроэнергии, также к пассивным элементам относятся конденсаторы. Активные элементы — это электродвигатели, заряжающиеся аккумуляторы и различные источники ЭДС.
- Курсовая работа 420 руб.
- Реферат 260 руб.
- Контрольная работа 230 руб.
Основными видами электрической цепи являются:
- замкнутая цепь;
- разомкнутая цепь.
Замкнутая электрическая цепь
Замкнутая электрическая цепь представляет собой наиболее простой вариант соединения. Она состоит из источника электроэнергии, потребителя энергии и соединительных элементов в виде обычных проводов. Провода в цепи обязательно должны иметь соответствующую изоляцию.
Для обеспечения стабильной и безопасной работы электрической цепи ее снабжают дополнительными элементами. Обычно это различные электроизмерительные приборы, с помощью которых можно узнать величину токов и напряжения в системе, а также оборудование, предназначенное для замыкания и размыкания цепи.
Все замкнутые электрические цепи делят на две основные части:
- внешний участок цепи;
- внутренний участок цепи.
Определение 2
Внутренний участок цепи – непосредственно источник электроэнергии у потребителя.
Внешний участок цепи – система, которая состоит из одного или многих потребителей электроэнергии, а также соединительных проводов и приборов. Все они должны иметь отношение к функционированию замкнутой электрической цепи.
Закон Ома для замкнутой цепи
Закон Ома для замкнутой цепи показывает определенное значение тока. Оно зависит от сопротивления источника, а также от сопротивления нагрузки.
Величина тока в замкнутой цепи, которая состоит из источника цепи, будет равняться отношению электродвижущей силы источника к сумме внешнего и внутреннего сопротивлений. При этом источник тока должен обладать внешним и внутренним нагрузочным сопротивлением.
Такая зависимость была установлена экспериментальным путем в начале 19 века известным ученым Георгом Омом. Он смог описать результаты собственных опытов на математическом уровне.
Закон Ома для замкнутой цепи можно записать следующим образом:
$I=\frac{\varepsilon}{R+r}$, где:
- $\varepsilon$ — электродвижущая сила источника напряжения;
- $R$ — сопротивление всех внешних элементов цепи, например, проводников;
- $r$ — внутреннее сопротивление источника напряжения;
- $I$ – сила тока в цепи.
Расчет для определенного сопротивления:
$\varepsilon =I_1 R_1+I_1 r$
$\varepsilon=I_2 R_2+I_2 r$
После подстановки полученных значений, формула приобретает такой вид:
$\varepsilon=\frac{I_1 I_2 (R_2-R_1)}{I_2-I_1}$
Физический смысл закона Ома для замкнутой цепи
Замкнутую электрическую цепь образуют потребители энергии только в совокупности с источником тока. Проходящий через потребителя ток течет обратно на его источник. Поэтому току достается сопротивление проводника и источника. Из этого складывается общее сопротивление замкнутой цепи, предполагающее наличие двух основных компонентов: сопротивления источника и сопротивления потребителя.
Зависимость тока от электродвижущей силы источника и сопротивления цепи состоит в следующем: при увеличении электродвижущей силы увеличивается энергия носителей зарядов. Это означает, что становится больше скорость движения зарядов в упорядоченном виде. Если увеличивать размер сопротивления цепи, то величина тока будет уменьшаться.
Электрический ток проходит непосредственно по замкнутой цепи. Необходимым условием присутствия электрического тока в цепи является надежное соединение проводниками источника электрической энергии с ее потребителями.
Источники электроэнергии для различной аппаратуры: генераторы, аккумуляторы, гальванические элементы.
В различных устройствах могут быть определенные потребители электрической энергии. Чаще всего их представляют в виде ламп или электродвигателей.
Для соединения источников и потребителей в единую цепь применяют проводники из металлических материалов. Они могут быть различной формы, длины, толщины, обладать определенными техническими характеристиками. Часто применяются проводники, которые изолированы друг от друга.
Для возникновения тока нужно соединить две точки. Одна из точек должна иметь избыток электронов по отношению ко второй точке. Специалисты называют это действие созданием разности потенциалов между точками. Источник тока служит основным элементом для создания разности потенциалов в электрической цепи.
Любой потребитель электрической энергии может являться нагрузкой в цепи. Нагрузка создает сопротивление электрическому току.
Электрический ток активно используют при создании искусственного освещения. Электрические простые лампы служат примером замкнутой цепи.
Разомкнутая электрическая цепь
При отсутствии потока электронов необходимое напряжение источника цепи проявляется на концах точек. В этом случае происходит процесс ожидания момента соединения концов точек, чтобы возобновился поток электронов. Подобную цепь принято называть разомкнутой.
Замечание 1
При связывании концов проводов, где существует разрыв, непрерывность всей цепи восстановится. Это основная разница между замкнутой и разомкнутой цепью.
При включении и выключении электрического освещения (лампы) требуется постоянно осуществлять похожие процессы. Для удобства были созданы специальные устройства. Их называют выключателями или рубильниками. Они в автоматическом режиме по сигналу управляют потоками электронов в цепи, контролируя начало и завершение работы электрооборудования.
Рубильники практически идеально подходят для демонстрации принципов работы выключателей и переключателей. Однако при использовании их в больших электрических цепях существует немало проблем, связанных с безопасной эксплуатацией. Так как некоторые части рубильников открыты, то существует вероятность воспламенения горючих материалов. В современных выключателях применяются подвижные и неподвижные контакты, которые защищены изоляционным корпусом.
Источник: https://spravochnick.ru/fizika/elektricheskie_cepi_-_chto_eto/zamknutaya_i_razomknutaya_elektricheskaya_cep/