Содержание
Расчёт катушки индуктивности под динамик
Добротность катушек, которые я мотаю для кроссоверов в акустику получается выше, чем у заводских, а активное сопротивление, при той же индуктивности – меньше. Звучат они заметно лучше заводских, особенно если их предварительно отслушать и поставить «по направлению».
Добротность у катушек большого диаметра, а я их делаю в виде бубликов – получается выше, чем у намотанных на обычных каркасах от трансформаторов или специальных каркасов для катушек.
Для кроссоверов это – хорошо, т.к. крутизна среза кроссовера с высокодобротными катушками получается более резкой.
Что приводит к снижению проникания сигнала в соседнюю полосу, а следовательно – к лучшей фильтрации.
Сами катушки и их каркасы периодически встречаются на радио рынках и барахолках. В СССР было выпущено бессчетное количество колонок S-90, S-50 и S-30. Вот как раз кроссоверы от этих колонок, либо детали от них попадаются довольно часто.
Форм фактор заводских катушек
Практически во всех зарубежных колонках, которые мне доводилось разбирать и переделывать стоят катушки, намотанные на каркасах малого диаметра и большой длины. Для увеличения индуктивности в них, как правило устанавливаются металлические сердечники из обычного прутка или пластин трансформаторной стали либо феррита.
Причина засилья подобных катушек в кроссоверах акустических систем – чисто практическая. Из-за того, что витки провода растянуты по большой длине и находятся на минимальном расстоянии от металлического сердечника, индуктивность катушки, выполненной в «длинном» форм-факторе получается максимально возможной.
При этом из-за малой длины каждого элементарного витка, активное сопротивление такой катушки также – оказывается минимальным. «Вытянутый» конструктив позволяет довольно прилично уменьшить диаметр и, следовательно – сечение необходимого для намотки такой катушки провода, оставаясь в заданных инженерами параметрах индуктивности и активного сопротивления.
Делают катушки в таком форм-факторе исключительно для того, чтобы сэкономить дорогостоящий медный провод.
У «длинных» катушек есть один, но жирный минус – их добротность намного ниже, чем у катушек, намотанных на каркасах большого диаметра. Добротность же – один из ее важнейших параметров, влияющих на крутизну среза звеньев кроссовера и подавление пиков излучения на частотной характеристике динамических головок.
В связи с невысокой добротностью, который показывают такие катушки будучи установленными в кроссоверах, крутизна среза НЧ/СЧ и СЧ/ВЧ звеньев фильтра оказывается недостаточной и на смежные динамические головки проникает сигнал из соседней полосы.
Если не вдаваться в теорию, то получается, то на частоте раздела звеньев кроссовера с малой крутизной спада одновременно играет и одна (например – НЧ) и вторая, смежная с ней головка (например – СЧ) головка. Такая синфазная работа двух головок на каком-то определенном участке частотного диапазона создает хорошо различаемую на слух интерференцию и дополнительные искажения.
Сердечники в катушках
В большинстве заводских катушек, применяемых для кроссоверов установлены ферромагнитные сердечники из пластин трансформатороной стали, или ферритовых стержней.
Иногда встречаются катушки, намотанные на ферритовых каркасах, выполненных в форме цилиндра со щечками.
Любой ферромагнетик, будучи введенным в катушку повышает ее индуктивность, а следовательно – для сохранения расчетных параметров, позволяет уменьшить витки и массу дорогостоящего медного провода.
К большому сожалению, ферромагнитные материалы в катушках на звук влияют ВСЕГДА отрицательно.
Так, железные сердечники, при больших уровнях сигнала и соотвесттвенно – громкости, нередко входят в насыщение, что приводит к резкому росту искажений, вносимых катушкой.
Хотя, казалось бы, катушка индуктивности это пассивный и теоретически – линейный элемент, откуда у него могут возникнуть искажения, свойственные скорее полупроводниковым приборам?
Я больше десяти раз проводил натурные эксперименты, когда в работающей колонке «по-горячему» менялись две катушки с одинаковой индуктивностью, одна с ферромагнитным сердечником, вторая – воздушная.
Это слышали на 100 % все, кто вместе со мной проводил эксперименты.
При высокой добротности у катушки легче убрать «горбы» на АЧХ путем установки т.н. вырезного фильтра параллельно головке. Вырезной фильтр, это включенные последовательно конденсатор, катушка и резистор.
Чем выше добротность катушки, тем больший номинал резистора можно поставить и тем меньше влияние вырезного фильтра на остальную АЧХ головки + цепь коррекции. Добротность, это отношение между реактивным и активным сопротивлением катушки Q = w L/R пот.
Наматывая индуктивности более толстым проводом, чем у штатных я уменьшаю их активное сопротивление, в итоге добротность катушек – возрастает.
«Двойки» катушек испытывались в НЧ и СЧ звеньях кроссовера и ставились последовательно с динамическими головками.
Как я мотаю катушки
Я мотаю катушки для колонок самодельным литцендратом из 4-8 проводов диаметром 0,7-0,9 мм. Сначала все считал… Точно рассчитать количество витков у меня никогда получается.
В итоге, мотаю на глаз, благо за свою жизнь сделал тысячи катушек и примерно знаю, какая будет индуктивность. Делаю так. Сначала мотаю пробную катушку одиночным проводом, и довожу ее индуктивность до требуемого номинала.
Затем доматываю еще 15–20 % витков.
Далее, мотаю на несколько специальных оправок, такое же количество витков, как у пробной катушки. Если финальная катушка должна состоять из 6 проводов, тогда мотаю еще пять, если из 4-х, еще три и т.д.
Количество изолированных моножил, которыми мотается итоговая катушка зависит от того, где она будет стоять. Если катушка нужна для включения последовательно с НЧ головкой, количество жил 6-8 штук, диаметр каждой 0,7-0,9 мм.
Итоговое сечение: 3-4 кв.мм.
Приведу пример:
Вчера мотал две катушки для полочных колонок ProAc Studio 115, в каждую заложил по 6 жил диаметром 0,8 мм. Итоговое сечение провода 3 кв.мм. кол-во витков 200, индуктивность 2,5 мГн, сопротивление постоянному току 0,4 Ома. Диаметр катушки 140 мм, высота 50 мм, вес 2 Кг.
НЧ катушки можно мотать моно жилой большого диаметра, а вот катушки, стоящие последовательно с СЧ или СЧ/НЧ головкой, намного лучше играют, если они намотаны вот таким самодельным литцендратом.
Из-за большей площади поверхности нескольких изолированных друг от друга проводников, чем у такой же по сечению моножилы, литцендрат намного лучше пропускает ВЧ сигнал чем одиночный провод.
Хотя НЧ катушка и призвана к тому, чтобы высокие от басовой головки отрезать, многожильные катушки играют на слух легче и воздушнее и это – факт.
Намотав катушку, зачищаю (не обрывая) 4-8 проводов с двух сторон, скручиваю плоскогубцами и измеряю, что получилось. Индуктивность намотанной «литцендратом» катушки с 15-20 % превышением витков над пробной «моножильной», как правило оказывается чуть больше искомой.
Далее, снимаю катушку с оправки и стягиваю ее 4-мя нейлоновыми хомутами. Получается довольно плотный «бублик» круглого, либо близкого к круглому сечения. Опять измеряю – индуктивность чуть возросла. Уминаю бублик на полу своим весом, а он 100 кг…
Надо худеть! Индуктивность еще возросла. После этого отматываю 5-7 витков и не обрезая «литцендратный хвост», опять измеряю. Так довожу индуктивность катушки до искомой величины.
После чего – обрезаю хвост, зачищаю его, а саму катушку в 2-3 слоя обматываю изолентой хорошего качества, прямо с нейлоновыми хомутами.
Если нужно соблюсти точность в 1-2 %, что случается редко – не обрезанным «хвостом» корректирую индуктивность, намотав пару витков в том же (для увеличения) или в противоположном (для уменьшения) направлении.
Преимущества такого способа намотки: Катушки выполненные по описанной технологии получаются относительно большого диаметра и малой толщины с почти тороидальным (в разрезе) сечением.
Добротность катушек большого диаметра выше, чем намотанных на квадратных либо прямоугольных каркасах от трансформаторов, а сопротивление из-за тороидальной формы разреза катушки и круглой формы самой катушки – меньше.
Литцендрат для намотки НЧ, да и любых других катушек дает еще один «жирный» бонус: Для подключения динамиков и клемм к кроссоверам, с ним отпадает надобность в каких-то мягких проводах с непонятными акустическими свойствами.
К примеру – литцендрат НЧ катушки колонок ProAc Studio 115 (из 6-ти моножил по 0,8 мм) получился настолько мягким, что его без боязни механического обрыва, удалось подпаять к лепесткам динамика и входным терминалам. Внутри колонки создается весьма высокое давление и соответственно – вибрации.
В таких условиях распаивать лепестки динамика жесткой моножилой – получим риск обрыва. Ну и второй бонус – нет лишних проводов, значит нет 4-х лишних паек между ними, динамиками, катушками и входными терминалами.
Все вышеперечисленное благотворно влияет на звук, в чем я убеждался не один десяток раз.
Крепить катушку большого диаметра и малой толщины – просто. Я фиксирую ее к плате из текстолита при помощи 4-х нейлоновых хомутов.
Если катушку нужно установить вертикально, то креплю ее между двумя пластинами стеклотекстолита при помощи 2-х хомутов к нижней пластине и 2-х к верхней. Сами пластины стягиваю болтами М-4.
Получается очень жесткая двух-платная конструкция фильтра, в которой катушки можно расположить перпендикулярно друг другу, а значит – снизить их взаимное влияние.
Инструкция по намотке для коллег
Берете любую оправку, в данный момент я применяю оправки из бутылок для фанты или минеральной воды – и мотаете на ней пробную катушку. Я приноровился уже и примерно знаю, какое кол-во витков нужно намотать для того, чтобы получить нужную индуктивность. Могу потом составить таблицу. Намотав пробную катушку не снимая ее с оправки, измеряете получившуюся индуктивность.
С начала провода делаете полную зачистку кончика, а там где получился теоретический конец, соскабливаете лак с одной стороны (провод при этом не обрезаете). Если индуктивности мало, обматываете поврежденный участок кусочком изоленты и доматываете какое-то кол-во витков, после чего провод обрезаете. Витки при намотке пробной катушки естественно считаете.
После этого берете вторую оправку (бутылку) и наматываете на нее такое же кол во витков, ну и еще два-шесть раз повторяете такое же действие. У вас получается 4-10 оправок с намотанными катушками в одну сторону.
Потом кладете все эти оправки в несколько картонных коробок на пол, оттягиваете от каждой оправки по кончику провода, соединяете их в пучок и наматываете общую катушку из 4-10 жил. Ваши оправки (бутылки) в лежачем положении и в коробках, никуда не укатываются и провод на них не путается.
У получившейся катушки из пучка индуктивность относительно одиночной катушки падает процентов на 10-20 не больше, не зависимо от количества проводов в пучке. Допустим, вы намотали на пробную катушку 150-170 витков провода 0,6-0,9 мм в диаметре и получили индуктивность в 1,3 мГн. После этого сделали еще 4 таких же катушки на бутылках.
Потом все провода перемотали на одну общую оправку. Диаметр этой катушки из-за увеличившего сечения провода – вырос, длина каждого витка увеличилась, а кол-во витков естественно – уменьшилось. У вас в итоге получилось уже не 150-170, а 120-130 витков. И как итог – индуктивность вашей катушки упала с 1,3 мГн до 1,0-1,1 мГн. Да и еще, подмеченная особенность.
Хотя по теории, в катушке, намотанной пучком проводов получается несколько одиночных (по количеству жил) катушек, соединенных параллельно. Индуктивность катушки, намотанной одиночным проводом практически совпадает с индуктивностью катушки, намотанной пучком изолированных друг от друга проводов и зависит только от количества витков. Вот такая история…
В будущем хочу сделать специальные разборные оправки под катушки разного диаметра и толщины. Это не так просто поскольку требует специальных проточек (4-х) для заведения стягивающих нейлоновых хомутов.
Плюс оправки должны быть выполнены из немагнитного материала, желательно вообще их сделать не из металла, а например из: текстолита, эбонита, винипласта и т.д. Стягивать половинки такой оправки нужно немагнитными болтиками и гайками (из титана, дюраля или латуни).
На сегодня я намотал за полтора года катушек 500-600 если не больше. Хочу заказать сначала один разборной каркас, попробую его в работе, скорректирую и потом уже закажу разные. Мне нужно, чтобы он состоял из двух половин, и на нем можно было мотать катушку формы тороида в сечении.
Источник: https://himediadom.ru/modeli/raschyot-katushki-induktivnosti-pod-dinamik.html
Катушка индуктивности
Что вы себе представляете под словом “катушка” ? Ну… это, наверное, какая-нибудь “фиговинка”, на которой намотаны нитки, леска, веревка, да что угодно! Катушка индуктивности представляет из себя точь-в-точь то же самое, но вместо нитки, лески или чего-нибудь еще там намотана обыкновенная медная проволока в изоляции.
Изоляция может быть из бесцветного лака, из ПВХ-изоляции и даже из матерчатой. Тут фишка такая, что хоть и провода в катушке индуктивности очень плотно прилегают к друг другу, они все равно изолированы друг от друга. Если будете мотать катушки индуктивности своими руками, ни в коем случае не вздумайте брать обычный медный голый провод!
Индуктивность
Любая катушка индуктивности обладает индуктивностью. Индуктивность катушки измеряется в Генри (Гн), обозначается буковкой L и замеряется с помощью LC – метра.
Что такое индуктивность? Если через провод пропустить электрический ток, то он вокруг себя создаст магнитное поле:
где
В – магнитное поле, Вб
I – сила тока, А
А давайте возьмем и намотаем в спиральку этот провод и подадим на его концы напряжение
И у нас получится вот такая картина с магнитными силовыми линиями:
Грубо говоря, чем больше линий магнитного поля пересекут площадь этого соленоида, в нашем случае площадь цилиндра, тем больше будет магнитный поток (Ф). Так как через катушку течет электрический ток, значит, через нее проходит ток с Силой тока (I), а коэффициент между магнитным потоком и силой тока называется индуктивностью и вычисляется по формуле:
С научной же точки зрения, индуктивность – это способность извлекать энергию из источника электрического тока и сохранять ее в виде магнитного поля. Если ток в катушке увеличивается, магнитное поле вокруг катушки расширяется, а если ток уменьшается , то магнитное поле сжимается.
Самоиндукция
Катушка индуктивности обладает также очень интересным свойством. При подаче на катушку постоянного напряжения, в катушке возникает на короткий промежуток времени противоположное напряжение.
Это противоположное напряжение называется ЭДС самоиндукции. Эта ЭДС зависит от значения индуктивности катушки. Поэтому, в момент подачи напряжения на катушку сила тока в течение долей секунд плавно меняет свое значение от 0 до некоторого значения, потому что напряжение, в момент подачи электрического тока, также меняет свое значение от ноля и до установившегося значения. Согласно Закону Ома:
где
I – сила тока в катушке , А
U – напряжение в катушке, В
R – сопротивление катушки, Ом
Как мы видим по формуле, напряжение меняется от нуля и до напряжения, подаваемого в катушку, следовательно и ток тоже будет меняться от нуля и до какого то значения. Сопротивление катушки для постоянного тока также постоянное.
И второй феномен в катушке индуктивности заключается в том, что если мы разомкнем цепь катушка индуктивности – источник тока, то у нас ЭДС самоиндукции будет суммироваться к напряжению, которое мы уже подали на катушку.
То есть как только мы разрываем цепь, на катушке напряжение в этот момент может быть в разы больше, чем было до размыкания цепи, а сила тока в цепи катушки будет тихонько падать, так как ЭДС самоиндукции будет поддерживать убывающее напряжение.
Сделаем первые выводы о работе катушки индуктивности при подаче на нее постоянного тока. При подаче на катушку электрического тока, сила тока будет плавно увеличиваться, а при снятии электрического тока с катушки, сила тока будет плавно убывать до нуля. Короче говоря, сила тока в катушке мгновенно измениться не может.
Типы катушек индуктивности
Катушки индуктивности делятся в основном на два класса: с магнитным и немагнитным сердечником. Снизу на фото катушка с немагнитным сердечником.
Но где у нее сердечник? Воздух – это немагнитный сердечник :-). Такие катушки также могут быть намотаны на какой-нибудь цилиндрической бумажной трубочке. Индуктивность катушек с немагнитным сердечником используется, когда индуктивность не превышает 5 миллигенри.
А вот катушки индуктивности с сердечником:
В основном используют сердечники из феррита и железных пластин. Сердечники повышают индуктивность катушек в разы. Сердечники в виде кольца (тороидальные) позволяют получить большую индуктивность, нежели просто сердечники из цилиндра.
Для катушек средней индуктивности используются ферритовые сердечники:
Катушки с большой индуктивностью делают как трансформатор с железным сердечником, но с одной обмоткой, в отличие от трансформатора.
Дроссель
Также есть особый вид катушек индуктивностей. Это так называемые дроссели. Дроссель – это катушка индуктивности, задача которой состоит в том, чтобы создать в цепи большое сопротивление для переменного тока, чтобы подавить токи высоких частот.
Постоянный ток через дроссель проходит без проблем. Почему это происходит, можете прочитать в этой статье. Обычно дроссели включаются в цепях питания усилительных устройств. Дроссели предназначены для защиты источников питания от попадания в них высокочастотных сигналов (ВЧ-сигналов). На низких частотах (НЧ) они используются в фильтрах цепей питания и обычно имеют металлические или ферритовые сердечники. Ниже на фото силовые дроссели:
Также существует еще один особый вид дросселей – это сдвоенный дроссель. Он представляет из себя две встречно намотанных катушки индуктивности. За счет встречной намотки и взаимной индукции он более эффективен. Сдвоенные дроссели получили широкое распространение в качестве входных фильтров блоков питания, а также в звуковой технике.
Что влияет на индуктивность?
От каких факторов зависит индуктивность катушки? Давайте проведем несколько опытов. Я намотал катушку с немагнитным сердечником. Ее индуктивность настолько мала, что LC – метр мне показывает ноль.
Имеется ферритовый сердечник
Начинаю вводить катушку в сердечник на самый край
LC-метр показывает 21 микрогенри.
Ввожу катушку на середину феррита
35 микрогенри. Уже лучше.
Продолжаю вводить катушку на правый край феррита
20 микрогенри. Делаем вывод, самая большая индуктивность на цилиндрическом феррите возникает в его середине. Поэтому, если будете мотать на цилиндрике, старайтесь мотать в середине феррита. Это свойство используется для плавного изменения индуктивности в переменных катушках индуктивности:
где
1 – это каркас катушки
2 – это витки катушки
3 – сердечник, у которого сверху пазик под маленькую отвертку. Вкручивая или выкручивая сердечник, мы тем самым изменяем индуктивность катушки.
Экспериментируем дальше. Давайте попробуем сжимать и разжимать витки катушки. Для начала ставим ее в середину и начинаем сжимать витки
Индуктивность стала почти 50 микрогенри!
А давайте-ка попробуем расправим витки по всему ферриту
13 микрогенри. Делаем вывод: для максимальной индуктивности мотать катушку надо “виток к витку”.
Убавим витки катушки в два раза. Было 24 витка, стало 12.
Совсем маленькая индуктивность. Убавил количество витков в 2 раза, индуктивность уменьшилась в 10 раз. Вывод: чем меньше количество витков – тем меньше индуктивность и наоборот. Индуктивность меняется не прямолинейно виткам.
Давайте поэкспериментируем с ферритовым кольцом.
Замеряем индуктивность
15 микрогенри
Отдалим витки катушки друг от друга
Замеряем снова
Хм, также 15 микрогенри. Делаем вывод: расстояние от витка до витка не играет никакой роли в катушке индуктивности тороидального исполнения.
Мотнем побольше витков. Было 3 витка, стало 9.
Замеряем
Офигеть! Увеличил количество витков в 3 раза, а индуктивность увеличилась в 12 раз! Вывод: индуктивность меняется не прямолинейно виткам.
Если верить формулам для расчета индуктивностей, индуктивность зависит от “витков в квадрате”. Эти формулы я здесь выкладывать не буду, потому как не вижу надобности. Скажу только, что индуктивность зависит еще от таких параметров, как сердечник (из какого материала он сделан), площадь поперечного сечения сердечника, длина катушки.
Последовательное и параллельное соединение катушек индуктивности
При последовательном соединении индуктивностей, их общая индуктивность будет равняться сумме индуктивностей.
А при параллельном соединении получаем вот так:
При соединении индуктивностей должно выполняться правило, чтобы они были пространственно разнесены на плате. Это связано с тем, что при близком расположении друг друга их магнитные поля будут влиять с друг другом, и поэтому показания индуктивностей будут неверны. Не ставьте на одну железную ось две и более тороидальных катушек. Это может привести к неправильным показаниям общей индуктивности.
Резюме
Катушка индуктивности играет в электронике очень большую роль, особенно в приемопередающей аппаратуре. На катушках индуктивности строятся также различные фильтры для электронной радиоаппаратуры, а в электротехнике ее используют также в качестве ограничителя скачка силы тока.
Ребята из Паяльника забабахали очень неплохой видос про катушку индуктивности. Советую посмотреть в обязательном порядке:
Источник: https://www.RusElectronic.com/katushka-induktivnosti/
Катушки индуктивности: расчет по формулам
Для того, чтобы создать магнитное поле и сгладить в нем помехи и импульсы, используются специальные накопительные элементы. Катушки индуктивности в цепи переменного тока и постоянного применяются для накопления определенного количества энергии и ограничения электричества.
Конструкция
Главное назначение катушек индуктивности ГОСТ 20718-75 – это накопление электрической энергии в пределах магнитного поля для акустики, трансформаторов и т. д. Их используют для разработки и конструирования различных селективных схем и электрических устройств. От конструкции (материала, количества витков), наличия каркаса зависит их функциональность, размеры и область использования. Изготовление устройств производится на заводах, но можно сделать их самостоятельно. Самодельные элементы несколько уступают по надежности профессиональным, но обходятся в разы дешевле.
Фото — схема
Каркас катушки индуктивности выполняется из диэлектрического материала. На него наматывается изолированный проводник, который может быть как одножильным, так и многожильным. В зависимости от типа намотки, они бывают:
- Спиральными (на ферритовом кольце);
- Винтовыми;
- Винтоспиральными или комбинированными.
Примечательной особенностью катушки индуктивности для электрических схем является то, что её можно намотать как в несколько слоев, так и нированно, т. е., с обрывками Если используется толстый проводник, то элемент может обматываться без каркаса, если тонкий – то только на рамку. Эти каркасы катушек индуктивности бывают различного сечения: квадратные, круглые, прямоугольные. Полученная намотка может вставляться в специальный корпус какого-либо электрического устройства или использоваться в открытом виде.
Фото — конструкция самодельного элемента
Для увеличения индуктивности используются сердечники. В зависимости от назначения элемента, варьируется используемый материал стержня:
- С ферромагнитным и воздушным сердечником применяются при высоких частотах тока;
- Стальные используются в условиях низкого напряжения.
Вместе с этим, в электротехнике активно используются индуктивные классические катушки без сердечника, которые можно сделать своими руками при помощи намотки на немагнитный контур.Такие устройства имеют некоторые преимущества перед «сердечными». У них большая линейность импеданса. Но, у тороидальной модели намотка на немагнитный каркас способствует появлению паразитной емкости.
Исходя из принципа работы, бывают такие типы:
- Контурные. Преимущественно используются в радиотехнике для создания колебательных контуров платы, работают вместе с конденсаторами. Для соединения используется последовательное подключение. Это современный вариант плоской контурной катушки Тесла;
- Вариометры. Это высокочастотные перестраиваемые катушки, индуктивностью которыми можно при необходимости управлять при помощи дополнительных устройств. Они представляют собой соединение двух отдельных катушек, при этом, одна подвижна, а вторая нет;
- Сдвоенные и подстроечные дроссели. Основные характеристики этих катушек: малое сопротивление постоянному току и высокое переменному. Дроссели изготавливаются из нескольких катушек, соединенных обмотками между собой. Их часто используют в виде фильтра для различных радиотехнических приборов, устанавливают для контроля помех в антенны и т. д.;
- Трансформаторы связи. Их конструктивной особенностью является то, что на одном стержне установлено от двух и более катушек. Они используются в трансформаторах для обеспечения определенной связи между отдельными компонентами устройства.
Маркировка катушек индуктивности определяется по количеству витков и цвету корпуса.
Фото — маркировка
Принцип действия
Схема работы катушек индуктивности активного действия основан на том, что каждый отдельный виток намотки пересекается с магнитными силовыми линиями. Этот электрический элемент необходим для того, чтобы извлекать электрическую энергию из источника питания и преобразовывая её сохранять в виде электрического поля. Соответственно, если ток цепи увеличивается – то расширяется и магнитное поле, но если он уменьшается – поле будет неизменно сжиматься. Эти параметры также зависят от частоты и напряжения, но в целом, действие остается неизменным. Включение элемента производит сдвиг фаз тока и напряжения.
Фото — принцип работы
Помимо этого, индуктивные (каркасные и бескаркасные) катушки обладают свойством самоиндукции, его расчет производится исходя из данных номинальной сети. В многослойной и однослойной обмотке создается напряжение, которое противоположно напряжению электрического тока. Это называется ЭДС, определение электродвижущей магнитной силы зависит от показателей индуктивности. Её можно рассчитать по закону Ома. Стоит отметить, что независимо от напряжения сети, сопротивление в катушке индуктивности не изменяется.
Фото — соединение отдельных выводов элементов
Связь индуктивности и понятия (изменения) ЭДС можно найти по формуле εc = — dФ/dt = — L*dI/dt, где ε – это значение ЭДС самоиндукции. И если скорость изменения электрической энергии будет равна dI/dt = 1 A/c, то и L = εc.
: расчет катушки индуктивности
Вычисление
Основные характеристики катушки индуктивности: добротность, индуктивность, потери, резонанс, паразитарная емкость и ЭДС. Также прибор зависит от ТИК – температурного коэффициента.
Для того чтобы рассчитать различные параметры, используются специальные физические формулы. К примеру, простейший колебательный контур состоит из катушки и конденсатора, он рассчитывается по следующей формуле:
Формула — формула колебательного контура
Где L – это сам элемент, накапливающая магнитную энергию.
В это же время, период свободных колебаний этого контура вычисляется по:
Формула — период свободных колебаний
Где C – это конденсатор, реактивный элемент схемы, отдающий накапливающий электрическую энергию конкретной цепи. Величина индуктивного сопротивления в такой цепи вычисляется по XL = U/I. Здесь X – это емкостное сопротивление. При расчете резистора в пример вставляются основные параметры этого элемента.
Индуктивность соленоида определяет формула:
Формула — индуктивность катушки-соленоида
Помимо этого, уровень индуктивности имеет определенную зависимость от температуры на плате. Параллельное подключение нескольких деталей, изменение плотности и размеров витков обмотки и прочие параметры влияют на основные свойства этого элемента.
Фото — зависимость от температуры
Чтобы узнать параметры катушки индуктивности, можно использовать различные методы: измерить мультиметром, испытать на осциллографы, проверить отдельно амперметром или вольтметром. Эти варианты очень удобны тем, что в них в качестве реактивных элементов применяются конденсаторы, электропотери которых очень малы и могут не учитываться в расчетах. Иногда с целью упростить задачу применяется специальная программа расчета и измерения нужных параметров. Это позволяет значительно упростить выбор нужных элементов для схем.
Купить катушки индуктивности (SMD 150 мкГн и другие) и провода для их намотки можно в любом электротехническом магазине, их цена варьируется от 2 долларов до нескольких десятков.
Источник: https://www.asutpp.ru/katushki-induktivnosti.html
Самодельная катушка для импульсного металлоискателя: подробное руководство по изготовлению
Решил собрать свой первый импульсный металлоискатель Clone PI-W и, вот, дело дошло до изготовления поисковой моно-катушки. А так как в настоящее время я испытываю некоторые финансовые затруднения, то передо мной стояла непростая задача — сделать катушку самому из максимально дешевых материалов.
Забегая вперед, сразу скажу, что с задачей я справился. В итоге у меня получился вот такой датчик:
Кстати говоря, получившаяся катушка-кольцо отлично подойдет не только для Clone, но и практически для любого другого импульсника (Кощей, Tracker, Пират).
Далее я расскажу, как сделать поисковую катушку для металлоискателя своими руками, потратив на это менее 500 рублей.
Рассказывать буду очень подробно, так как дъявол зачастую кроется в деталях. Тем более, что коротких историй изготовления катушек в инете пруд пруди (типо, берем вот это, тут отрезаем, обматываем, склеиваем и готово!) А начинаешь делать сам и оказывается, что о самом важном упомянули вскользь, а кое о чем вообще забыли сказать… И получается, что все сложнее, чем казалось в самом начале.
Здесь такого не будет. Готовы? Поехали!
Задумка
Проще всего для самостоятельного изготовления мне показалась такая конструкция: берем диск из листового материала толщиной ~4-6 мм. Диаметр этого диска определяется диаметром будущей обмотки (в моем случае он должен быть равен 21 см).
Затем к этому блинчику с обоих сторон приклеиваем два диска чуть большего диаметра, чтобы получилась как бы шпулька для намотки проволоки. Т.е. такая сильно увеличенная по диаметру, но сплюснутая по высоте катушка.
Для наглядности попробую изобразить это на чертеже:
Надеюсь, основная задумка ясна. Просто три диска, склеенные между собой по всей площади.
Выбор материала
В качестве материала я планировал взять оргстекло. Оно отлично обрабатывается и клеится дихлорэтаном. Но, к сожалению, так и не смог найти его забесплатно.
Всякие колхозные материалы типа фанеры, картона, крышек от ведер и т.п. я сразу отбросил, как непригодные. Хотелось чего-то прочного, долговечного и желательно водонепроницаемого.
И тогда мой взор обратился к стеклоткани…
Ни для кого не секрет, что из стеклоткани (или из стекломата, стеклохолста) делают все, что душе угодно. Даже моторные лодки и бамперы для автомобилей. Ткань пропитывают эпоксидной смолой, придают ей нужную форму и оставляют до полного отвердения. Получается прочный, водостойкий, легкообратываемый материал. А это как раз то, что нам нужно.
Итак, нам нужно сделать три блинчика и уши для крепления штанги.
Блины №1 и №2
Расчеты показали, что для получения листа толщиной 5.5 мм нужно взять 18 слоев стеклоткани. Чтобы снизить расход эпоксидки, стеклоткань лучше заранее нарезать кружочками требуемого диаметра.
https://www.youtube.com/watch?v=qkL3gDJxp_o\u0026list=PL6qwmR8c6KdOB7F4W0e8Xd52kr45iUKVS
Для диска диаметром 21 см как раз хватило 100 мл эпоксидной смолы.
Каждый слой нужно тщательно промазать, а затем всю стопку положить под пресс. Чем больше будет давление, тем лучше — лишняя смола выдавится, масса конечного изделия станет чуточку меньше, а прочность чуточку больше. Я нагрузил сверху примерно сотню килограмм и оставил до утра. На следующий день получился вот такой блинчик:
Это самая массивная часть будущей катушки. Весит он — будь здоров!
Потом расскажу, как за счет этой запчасти можно будет ощутимо снизить массу готового датчика.
Точно таким же образом был сделан диск диаметром 23 см и толщиной 1.5 мм. Его масса — 89 г.
Блин №3
Третий диск клеить не пришлось. В моем распоряжении оказался лист стеклотекстолита подходящего размера и толщины. Это была печатная плата от какого-то древнего устройства:
К великому сожалению, плата была с металлизированными отверстиями, поэтому пришлось потратить какое-то время на их высверливание.
Я решил, что это будет верхний диск, поэтому проделал в нем отверстие под ввод кабеля.
Уши для штанги
Остатков текстолита как раз хватило на уши для крепления корпуса датчика к штанге. Выпилил по два кусочка на каждое ухо (чтобы было прочно!)
В ушах надо сразу же просверлить отверстия под пластиковый болт, так как потом будет очень неудобно этим заниматься.
Кстати, это крепежный болт для стульчака унитаза.
Итак, все составляющие нашей катушки готовы. Осталось все это склеить в один большой бутерброд. И не забыть завести внутрь кабель.
Сборка в одно целое
Сначала верхний диск из дырявого стеклотекстолита склеил со средним блинчиком из 18 слоев стеклоткани. На это ушло буквально несколько миллилитров эпоксидки — этого хватило, чтобы промазать обе склеиваемые поверхности по всей площади.
Монтаж ушей
С помощью лобзика пропилил пазы. В одном месте, естественно, слегка перестарался:
Чтобы ухи хорошо легли, сделал небольшой скос на краях пропилов:
Теперь надо было решить, какой вариант лучше? Уши-то можно поставить по-разному…
Катушки промышленного производства чаще сделаны по правому варианту, мне же больше нравится левый. Я вообще частенько принимаю левые решения…
По идее, правый способ лучше сбалансирован, т.к. крепление штанги оказывается ближе к центру тяжести. Но далеко не факт, что после облегчения катушки, ее центр тяжести не сместится в ту или иную сторону.
Левый способ крепления чисто визуально выглядит приятнее (ИМХО), к тому же в этом случае общая длина металлоискателя в сложенном виде будет на пару сантиметров меньше. Для того, кто планирует возить прибор в рюкзаке, это может оказаться важным.
В общем, я свой выбор сделал и приступил к вклеиванию. Обильно намазал бокситкой, надежно зафиксировал в нужном положении и оставил застывать:
После застывания, все торчащее с обратной стороны сошкурил наждачкой:
Ввод кабеля
Затем с помощью круглого надфиля подготовил канавки для проводников, завел соединительный кабель через отверстие и вклеил его намертво:
Для предотвращения сильных перегибов, кабель в месте ввода нужно было как-то усилить. Для этих целей я заюзал, невесть откуда взявшуюся у меня, вот такую резиновую фигнюшку:
Конечно, если бы у меня был нормальный гермоввод, то было бы гораздо лучше, но… и так сойдет.
Оставалось приклеить третий блин (донышко).
Доделываем каркас
Чтобы приклеить третий блинчик потребовалось несколько миллилитров бокситки и пару часов времени на то, чтобы все схватилось. Вот результат:Таким образом, я получил жесткий и прочный каркас, полностью подготовленный для намотки провода.
Герметизация обмотки
В качестве обмоточного провода был использован медный эмалированный провод диаметром 0.71 мм. После намотки 27 витков, датчик потяжелел еще на 65 грамм:
Теперь обмотку надо было как-то законопатить. В качестве замазки применил смесь эпоксидной смолы и мелко нарезанного стекловолокна (узнал про этот суперский рецепт из этой статьи).
Короче, настругал немного стеклоткани:
и круто замешал ее с бокситкой с добавлением пасты от шариковой ручки. Получилась вязкая субстанция, похожая на мокрые волосы. Таким составом можно замазывать любые щели без проблем:
Кусочки стекловолокна придают шпатлевке необходимую вязкость, а после застывания обеспечивают повышенную прочность клеевого шва.
https://www.youtube.com/watch?v=YgB_wWPxwcQ\u0026list=PL6qwmR8c6KdOB7F4W0e8Xd52kr45iUKVS
Чтобы смесь как следует уплотнилась, а смола пропитала витки провода, обмотал все это изолентой в натяг:
Изолента должна быть обязательно зеленой или, на худой конец, синей.
После того, как все хорошенько застыло, мне стало интересно, насколько прочной получилась конструкция. Оказалось, что катушка спокойно выдерживает мой вес (около 80 кг).
На самом деле такая сверхпрочная катушка нам не нужна, гораздо важнее ее вес. Слишком большая масса датчика обязательно даст о себе знать болью в плече, особенно, если вы планируете вести длительный поиск.
Облегчайзинг
Чтобы уменьшить вес катушки, было решено выпилить некоторые участки конструкции:
Данная манипуляция позволила скинуть 168 грамм лишнего веса. При этом прочность датчика практически не уменьшилась, в чем можно убедиться благодаря данному видео:
Теперь задним умом понимаю, как можно было изготовить катушку еще немного легче. Для этого надо было заранее наделать больших отверстий в среднем блинчике (перед тем, как все склеивать). Что-то типа такого:
Пустоты внутри конструкции почти не сказались бы на прочности, но зато снизили бы общую массу еще грамм на 20-30. Сейчас, конечно, уже поздняк метаться, но на будущее учту.
Еще один путь облегчения конструкции датчика — уменьшить ширину наружного кольца (где уложены витки провода) миллиметров на 6-7. Конечно, это можно сделать и сейчас, но пока нет такой необходимости.
Финишная окраска
Нашел отличную краску для стеклотекстолита и изделий из стекловолокна — эпоксидная смола с добавлением красителя нужного цвета. Так как вся конструкция моего датчика изготовлена на основе бокситки, то краска на основе смолы будет иметь отличную адгезию, и ляжет как родная.
В качестве красителя черного цвета применил алкидную эмаль ПФ-115, добавляя ее до получения нужной укрывистости.
Как показала практика, слой такой краски держится очень прочно, а выглядит так, будто изделие обмакнули в жидкий пластик:
При этом цвет может быть любым в зависимости от используемой эмали.
Итоговая масса поисковой катушки вместе с кабелем после покраски — 407 г
Кабель отдельно весит ~80 грамм.
Проверка
После того, как наша самодельная катушка для металлоискателя была полностью готова, надо было проверить ее на отсутствие внутреннего обрыва. Самый простой способ проверки — тестером измерить сопротивление обмотки, которое в норме должно быть очень низким (максимум 2.5 Ома).
В моем случае сопротивление катушки вместе с двумя метрами соединительного кабеля оказалось в районе 0.9 Ом.
К сожалению, таким простым способом не получится выявить межвитковое замыкание, поэтому приходится рассчитывать на свою аккуратность при намотке. Замыкание, если оно есть, сразу же проявит себя после запуска схемы — металлоискатель будет потреблять повышенный ток и иметь крайне низкую чувствительность.
Заключение
Итак, считаю, что поставленная задача была выполнена успешно: мне удалось сделать очень прочную, водостойкую и не слишком тяжелую катушку из самых бросовых материалов. Список расходов:
- Лист стеклотекстолита 27 х 25 см — бесплатно;
- Лист стеклоткани, 2 х 0.7 м — бесплатно;
- Эпоксидная смола, 200 г — 120 руб;
- Эмаль ПФ-115, черная, 0.4 кг — 72 руб;
- Намоточный провод ПЭТВ-2 0.71 мм, 100 г — 250 руб;
- Соединительный кабель ПВС 2х1.5 (2 метра) — 46 руб;
- Кабельный ввод — бесплатно.
Теперь передо мной стоит задача изготовления точно такой же нищебродской штанги. Но это уже совсем другая история.
Источник: http://electro-shema.ru/metaldetector/vodonepronitsaemaya-impulsnaya-katushka.html