Прибор для проверки автомобильных ламп

Содержание

Самодельный автомобильный тестер-пробник

Прибор для проверки автомобильных ламп

Несмотря на высокую надежность автоэлектрики современных автомобилей, все равно приходится сталкиваться с ее ремонтом. Чаще всего перестают работать световые приборы, фары, габаритные огни или указатели поворота. Причиной неисправности может быть, как сама лампочка, так и токоподводящие контакты или предохранитель. Возможно возникновение сразу всех трех неисправностей. Из-за плохого контакта в патроне или колодки лампочки она может перегореть. В момент перегорания в самой лампочке возникает дуга, укорачивающая нить накала, что приводит к резкому увеличению в цепи тока. При перегорании лампочки часто перегорает и предохранитель.

Разобраться в причине поломки без приборов не простая задача. Придется подставлять заведомо исправные детали. Неисправность можно определить с помощью стрелочного тестера или мультиметра, но не у каждого есть такой прибор и в автомобиле не очень удобно с ним работать, особенно в плохую погоду. Гораздо удобнее искать неисправность простейшим универсальным автомобильным тестером-пробником, сделанным своими руками.

Автомобильный тестер-пробник можно сделать из любой шариковой ручки, удалив из нее пишущий стрежень и разместив в ее корпусе всего один светодиод любого типа и токоограничивающий резистор. Соединяются детали между собой по ниже приведенной электрической принципиальной схеме. Как видите, проще схемы не бывает. Такой пробник может своими руками смастерить любой автолюбитель, не имеющий опыта изготовления электронных устройств.

Для надежного электрического контакта при касании щупом и возможности прокола изоляции проводов при поиске неисправностей, конец щупа выполнен виде стального острия. Чтобы сделать такой конец из пишущего стержня нужно извлечь пишущий узел и со стороны поступления пасты вставить в него тонкую швейную иголку. Иголка выдавит шарик, и острый ее конец выйдет из пишущего узла. Если ее вставить со значительным усилием, то она будет крепко зафиксирована. К самой иголке припаивается проводник, идущий к светодиоду.

Пишущий стержень надо брать с латунным пишущим узлом и большим шариком (ручки с такими стержнями оставляют широкую линию), иначе иголка может не достаточно войти в пишущий узел, и не будет выступать в достаточной мере, на 1,5-2 мм.

Проводник, для подключения автомобильного тестера к минусу аккумулятора или корпусу автомобиля можно припаять непосредственно к выводу резистора R1. Но для возможности смены проводника в случае его обрыва или если потребуется провод большей длины, я сделал присоединение его на резьбе.

Для этого достаточно отрезок трубки с внутренней резьбой вплавить, разогрев паяльником в подготовленное отверстие в корпус авторучки, предварительно припаяв к ней проводник необходимой длины.

Светодиод установлен на боковой стороне корпуса автомобильного тестера, но можно его установить на торце корпуса, а минусовой провод вывести сбоку.

Как пользоваться тестером

Приведу на примерах как можно выполнить проверку тестером исправность аккумулятора, предохранителя, лампочки накаливания и электромагнитного реле.

Как проверить аккумулятор

Для проверки наличия напряжения на выводах аккумулятора, нужно зажимом крокодил подсоединиться к отрицательному выводу аккумулятора, а концом щупа тестера прикоснуться к положительной клемме.

Если светодиод на тестере засветился, значит, напряжение на аккумуляторе есть. Такая проверка не позволяет проверить степень заряда аккумулятора. Определению уровень заряженности аккумулятора посвящена статья сайта «Как заряжать аккумулятор автомобиля».

Как проверить предохранитель

Для проверки автомобильного предохранителя, нужно одним концом вывода предохранителя прикоснуться к положительному выводу аккумулятора и концом щупа тестера прикоснуться ко второму его выводу.

Если светодиод на тестере засветился, значит, предохранитель исправен. В противном случае потребуется его замена или ремонт.

Как проверить лампочку накаливания

Для проверки тестером лампочки накаливания, нужно одним выводом цоколя лампочки прикоснуться к положительному выводу аккумулятора, а ко второму выводу лампочки прикоснуться щупом тестера.

Если светодиод засветится, то лампочка исправна. Если в лампочке две нити накала, например лампочка для фар автомобиля, то нити накала проверяются по очереди.

Как проверить автомобильное реле

Автомобильное реле кроме обмотки электромагнита имеет еще и контакты, которые со временем выгорают и могут перестать коммутировать электрические цепи. С помощью тестера можно проверить как целостность обмотки, так и исправность контактов.

Стандартное автомобильное реле имеет ниже приведенную электрическую схему. Выводы 85 и 86 сделаны от обмотки реле. Вывод под номером 30 выполнен от подвижного контакта, 87а от нормально замкнутого контакта с подвижным контактом 30 и 87, это вывод от контакта, с которым соединяется подвижный контакт 30 при подаче на обмотку напряжения питания.

Для проверки обмотки реле, нужно одним из его выводов 85 или 86 прикоснуться к плюсовой клемме аккумулятора, а ко второму выводу прикоснуться щупом тестера. Если светодиод засветился, значит, обмотка целая. Исправность контактов проверяется касанием вывода подвижного контакта 30 к клемме аккумулятора, а щупа к выводу 87а. Таким же способом легко проверить любые выключатели и микропереключатели.

Как пользоваться тестером
при ремонте электропроводки автомобиля

На практике при поиске неисправности электрооборудования автомобиля нет необходимости извлекать предохранители и лампочки. Как известно, отрицательный вывод аккумулятора подключен к корпусу автомобиля и все электрооборудование в автомобиле одним выводом тоже подключено к корпусу. Таким образом, удалось в два раза уменьшить количество проводов электропроводки и повысить ее надежность. Исключение составляют только активаторы для замков дверей автомобиля, так как на них нужно подавать напряжение разной полярности в зависимости от необходимости отрыть или закрыть замок двери.

Например, если не светит лампочка одной из фар. Неисправность может быть в одном из элементов подачи напряжения на лампочку – включатель в салоне, реле, предохранитель или неисправность самой лампочки. Вероятнее всего перегорела сама лампочка, с нее и надо начинать проверку.

Для этого нужно зажимом крокодил тестера зацепиться за любую оголенную металлическую деталь кузова автомобиля или отрицательный вывод аккумулятора. Проверить качество контакта, прикоснувшись иглой щупа к плюсу аккумулятора. Светодиод должен светить. Включить неработающую фару и концом щупа по очереди коснуться всех контактов подключения лампочки. Если такой возможности нет, то можно иглой щупа проколоть по очереди каждый провод и если напряжения ни на одном нет (светодиод пробника не засветился) значит, лампочка цела, и нужно проверить предохранитель.

По схеме смотрите, где он установлен и проверяете его, даже не вынимая из колодки. Для этого достаточно коснуться сначала к одному его выводу, а затем к другому. Светодиод тестера должен засветиться каждый раз. Если светит только при прикосновении к одному из выводов, то предохранитель перегорел. Если к выводам предохранителя не подобраться, то нужно его вынуть и проверить, как описано в статье выше.

По такой методике проверяются любые провода электропроводки и контакты в автомобиле.

Источник: https://YDoma.info/samodelki/samodelki-ehlektronnye/avtomobil-avtomobilnii-tester-probnik.html

Проверка автомобильных лампочек и радиоламп тестером

Прибор для проверки автомобильных ламп

Тестер или мультиметр – прибор, предназначенный для определения исправности электрических устройств и радиодеталей: проводников тока, батареек, аккумуляторов, переключателей, лампочек. Другие названия устройства – мультиметр, реже авометр. Существуют разные варианты тестеров с отличающимся набором функций. В самом простом варианте мультиметр объединяет возможности амперметра, вольтметра и омметра.

Такое устройство можно использовать как тестер для проверки ламп, электроцепей или радиодеталей. С его помощью можно провести основные измерения характеристик электроприборов и их отдельных элементов, выявить имеющиеся нарушения целостности электрической цепи. Более сложные мультиметры оснащены разнообразными дополнительными функциями.

Применение тестера

Один из вариантов прикладного использования мультиметра – проверка лампочек. Для этой процедуры достаточно использовать простейший вариант прибора.

Какую же информацию можно получить с помощью мультиметра? Существует несколько показателей работы лампочек, отображаемых на этом приборе:

  • пригодность лампочки – нарушение целостности электрического соединения приводит к прекращению прохождения тока;
  • определение сопротивления лампочки;
  • расчет ее мощности по показанному мультиметром сопротивлению.

Таким образом, можно проверить основные характеристики осветительного прибора, и понять, пригоден ли он к дальнейшему применению.

Режим прозвонки

Чтобы проверить работоспособность лампочки, достаточно знать, как прозвонить обычную электроцепь. Для этого переключатель устанавливают в режим «прозвона» – в положение с символом диода.

Затем одним щупом касаются центрального контакта цоколя, вторым – боковой поверхности с резьбой. Сигнал сработает, если сопротивление меньше 50–70 Ом. Это указывает на хорошую электропроводимость цепи и означает, что лампочка исправна.

Проверка дуговой ртутной лампы

Светильник с дуговой ртутной люминофорной лампой (ДРЛ) обычно можно встретить на улице или в заводском цехе. Для определения работоспособности прозванивают дроссель – устройство, ограничивающее ток, питающий ДРЛ.

Если схема была разорвана, то сопротивление будет неограниченно большим, что и покажет прибор. Если имеется потеря изоляции, ведущая к короткому замыканию, показатель повышается незначительно. В случае наличия замыкания в обмотке дросселя, сопротивление не меняется.

Если при проверке тестером дросселя проблем не было выявлено, то дуговая лампочка может не функционировать по причине неисправностей в системе подачи электроэнергии, к примеру, из-за окисления контактов. Принцип работы светильника очень простой, поэтому неисправности непосредственно в лампе ДРЛ встречаются редко.

При тестировании ДРЛ следует соблюдать значительную осторожность. При нарушении целостности стеклянной колбы, содержащей газ под высоким давлением, пары ртути могут распространяться на большие расстояния, загрязняя помещение.

Тестирование автомобильной лампочки

Автолюбителей часто интересует вопрос о том, как проверить лампу, вышедшую из строя. В чем причина неисправности? Проблема может заключаться не только в автомобильной лампочке, но и в электропроводке или патроне. Проверка мультиметром проводится так же, как и при тестировании обычных лампочек с нитью накаливания. Рекомендуется следующий порядок действий:

  • после остывания электронной системы автомобиля демонтировать неработающие лампочки;
  • установить тестер в положение проверки минимального сопротивления;
  • приложить щупы к контактам, чтобы проверить лампочки с помощью мультиметра.
Читайте также  Лампа для съемки в помещении

Если прибор измерит сопротивление, то лампочки исправны, если же на экране будут буквенные символы или знак бесконечности – это свидетельствует об их непригодности.

Анализ работоспособности диодов и радиоламп

Радиолампы представляют собой ламповые диоды, использовавшиеся ранее в электронном оборудовании. В настоящее время они заменены полупроводниковыми диодами. Тестирование любых видов диодов, в том числе радиоламп, с помощью мультиметра имеет свои особенности.

Диод имеет два полюса – катод и анод. Если поднести положительный щуп мультиметра (красный) к аноду, а отрицательный (черный) к катоду, ток будет протекать через диод. На экране мультиметра отобразится пороговое напряжение, величина которого может колебаться от 200 до 800 мВ.

Если поменять местами щупы тестера, ток протекать не будет, поскольку диод обладает однонаправленной проходимостью. В случае с радиолампой сопротивление нужно определять между нитью накала, являющейся катодом, и управляющей сеткой.

Существует специальный прибор, называемый тестер ламп. Такие анализаторы, обеспечивающие проверку электроламп, снабжены приспособлениями для испытания вакуума. Эти приборы полезны не только как испытатели, но и как анализаторы для быстрого измерения рабочего режима ламповых элементов любого радиоаппарата.

Испытатель несколько отличается от мультиметра, он больше похож на стенд и позволяет измерять анодно-сеточные характеристики. На нем присутствуют гнезда для лампочек, миллиамперметр, работающий как милливольтметр, а также источники питания. Для любителей старых ламповых приемников тестер становится отличным помощником в работе.

Источник: https://EvoSnab.ru/instrument/test/kak-proverit-lampochku-multimetrom

Автомобильный щуп-прозвонка

Прибор для проверки автомобильных ламп

3 Ноября 2014

Автомобильный щуп-прозвонка (он же пробник)— это диагностический прибор, который широко используется при обслуживании электрического оборудования автомобилей. Основная область применения щупа-прозвонки — в качестве пробника электрических цепей автомобиля с высоким входным сопротивлением.

Особенности щупа и принцип его работы

Щуп-прозвонка конструктивно представляет собой пластиковую капсулу, внутрь которой помещен резистор с большим сопротивлением. От пластикового основания отходит металлический стержень, конец которого используется для непосредственного контакта с контактами электрооборудования. Прибор показывает наличие напряжения, индикаторами выступают расположенные на пластиковом корпусе светодиодные лампочки зеленого и красного цветов. Зеленый светодиод — показатель низкого сопротивления цепи, красный — наличия напряжения.

Автомобильный щуп-прозвонка, по сути являющийся вольтметром, незаменим при выявлении неисправностей электрооборудования автомобиля, а также при установке нового электрооборудования на транспортное средство.

Диагностический прибор дает возможность определить целостность электрической цепи либо отдельного ее участка, выявить места обрывов соединения, ненадежных контактов, расположения деталей, вышедших из строя, а также выявления ряда других повреждений. Для проведения быстрой проверки токопроводящего оборудования применение щупа-прозвонки — наиболее рациональное и целесообразное решение.

  • 165 ₽
  • 360 ₽
  • 2 330 ₽
  • 460 ₽
  • 340 ₽
  • 60 ₽
  • 210 ₽
  • 100 ₽
  • 640 ₽
  • 1 490 ₽

Показать все товары

Диагностический прибор широко применяется с целью:

  • поиска сигналов в электрической проводке автомобиля;
  • моментального распознавания положительных, отрицательных, переменных сигналов;
  • передачи отрицательного сигнала;
  • поиска неисправностей в работе электрического оборудования автомобиля;
  • поиска неисправностей в работе дополнительного оборудования, установленного на автомобиль.

Применение щупа-прозвонки для проверки различных видов электрооборудования

Проверка аккумулятора

Применяя щуп, можно проверить наличие напряжения на выводах аккумуляторной батареи. Для этого с использованием зажима типа «крокодил» необходимо подсоединиться к выводу аккумулятора со знаком «-», а конец щупа приставить к клемме со знаком «+».

Проверка предохранителя

С целью проверки предохранителя одним концом его вывода необходимо прикоснуться к положительному выводу аккумуляторной батареи, а концом щупа — к его второму выводу.

Проверка лампы накаливания

Чтобы проверить щупом-прозвонкой лампу накаливания, один вывод ее цоколя приставьте к положительному выводу аккумулятора, а ко второму приставьте конец щупа. При проверке лампочки с двумя нитями накала (такой, например, как лампа для фар автомобиля), их проверяйте поочередно.

Проверка автомобильного реле

В автомобильном реле помимо обмотки электромагнита также имеются и контакты, которые при длительном периоде эксплуатации могут выгорать, вследствие чего переставать коммутировать электрические цепи. С использованием щупа-прозвонки можно проверить и целостность электромагнитной обмотки, и исправность контактов.

Чтобы проверить обмотку реле, необходимо один из его выводов 85 или 86 приложить к клемме аккумулятора со знаком «+», а ко второму выводу приставить конец щупа. Исправность контактов определяется при касании вывода подвижного контакта 30 к клемме, а к выводу 87а — щупа-прозвонки.

Таким же образом осуществляется проверка любых микропереключателей и выключателей.

Преимущества использования щупа-прозвонки

Диагностическое оборудование такого типа отличается функциональностью и простотой использования. Из-за неисправности электрооборудования могут выходить из строя все узлы транспортного средства. Пробник позволяет оперативно выявить причину неисправности, определить элементы цепи, подлежащие ремонту или замене, а также произвести ремонт или замену с составлением правильной электрической цепи.

Автомобильный щуп-прозвонка — это недорогой прибор, который должен быть в инструментарии любого автовладельца.

Источник: https://www.avtoall.ru/article/5781432/

Как проверить лампочку мультиметром: расписываем во всех подробностях

Прибор для проверки автомобильных ламп

Источники освещения

Когда лампа перестала гореть, то, обычно, мы считаем, что она перегорела, и выбрасываем ее. Если цена обычной лампы накаливания невелика, то стоимость галогеновых довольна ощутима. Есть смысл проверить лампочку, но как это сделать?

Простейший способ

Самый простой способ диагностики подходит как для лампочек накаливания, так и для люминесцентных и светодиодных ламп. Он предполагает вкрутить подозрительную лампочку в другой светильник и включить его. К сожалению, это не всегда возможно. Иногда резьбовая часть цоколя изготовлена с отклонением от стандартного размера и при вкручивании в патрон не замыкает оба электрических контакта. Или в доме больше нет светильников с точно таким же патроном.

Покупая лампочку в магазине электротоваров, многие обращали внимание на то, как продавец проверяет её с помощью тестера. В корпусе тестера есть несколько разъёмов, предназначенных для диагностики лампочек разного типа: накаливания, люминесцентных и галогенных. Его задача – проверить целостность проводников внутри лампы, о чём свидетельствует звуковой сигнал. Эту же самую операцию можно проделать в домашних условиях, воспользовавшись мультиметром или многофункциональной индикаторной отвёрткой.

Инструкция как проверить автомобильную лампу тестером

Чтобы узнать, исправна ли автомобильная лампочка или нет, нам нужно выполнить следующие действия:

  1. Перед тем, как вытаскивать лампочку из фары или другой оптики автомобиля, подождите, пока все электронные системы остынут. Ведь там можно обжечься.
  2. После этого лампочку нужно доставать. Демонтаж фар достаточно простой. После раскручивания оптики, перед вами будет ряд лампочек – находим неисправную (или неисправные) и вынимаем. В современных автомобилях лампочки вынимаются достаточно просто, но можно встретить и старый вариант крепежа. Доставать все нужно очень аккуратно – обычно лампочки посажены на резьбу или через штекер.
  3. Удобно разместившись за столом, положите перед собой автомобильные лампочки и подготовьте тестер: нужно выставить положение измерения минимального сопротивления. Из-за того, что приборы отличаются, риска эта может находиться в разных местах, но иногда определить нужную опцию можно просто по названию (Min R или аналогичные символы).
  4. Щупами притрагиваемся к лампочке – к месту подключения. Важно, чтобы щупы в это время не касались друга, иначе результат будет неверным. Тестер сразу выдает результат на дисплей – если сопротивление измеряется в цифрах (20, 50, 100 или даже 0,05 Ом), то лампочка работает и никаких обрывов нет. Если же она неисправна, то на дисплее будет знак бесконечности или буквы.
  5. Проводим демонтаж в обратном порядке уже с новыми лампами.

Принцип работы

Люминесцентная лампа по принципу действия приравнивается к газоразрядным источникам света, является энергосберегающей. Из стеклянной колбы откачивается воздух и помещается инертный газ с капелькой ртути 30 мг. В противоположные стороны встроены спиральные электроды, напоминающие нить накаливания. Эти электроды припаяны с обеих сторон к двум контактным ножкам, помещенным в диэлектрические пластины. Трубка изнутри покрыта слоем люминофора. Длина, диаметр и форма колбы могут быть разными, внутреннее строение от этого не меняется.

Строение люминесцентной лампы

Включение ЛЛ происходит с помощью пускорегулирующей аппаратуры – электромагнитной или электронной. Электромагнитная пускорегулирующая аппаратура (ЭмПРА) включает в себя главный элемент – дроссель.

Электромеханический дроссель

Это балластное сопротивление в виде катушки индуктивности с металлическим сердечником, последовательно соединенное с ЛДС. Дроссель поддерживает равномерность разряда и корректирует ток при необходимости. В миг включения светильника дроссель сдерживает пусковой ток, пока спиральные нити не разогреются, далее выдает пиковое напряжение от самоиндукции, зажигающее лампу.

Схема люминесцентного светильника с ЭмПРА

Обратите внимание! Дроссель сдерживает ток в системе при включении, предотвращая перегрев спиральных нитей в трубке и их перегорание.

Предъявляемые к балластному сопротивлению требования:

  • минимальные потери мощности;
  • малые вес и размер;
  • отсутствие гула;
  • температура накала не выше 600 градусов по Цельсию.

Другой значимый элемент ЭмПРА – стартер тлеющего разряда.

Стартер тлеющего разряда

Во время включения светильника в стартере возникает разряд тока, накаляющий биметаллические контакты. Они замыкаются, увеличивая ток в цепи светильника, что ведет к разогреву электродов. Далее биметаллический контакт стартера остывает и размыкает цепь. В этот миг балласт (дроссель) выдает высоковольтный импульс на электроды. Между ними возникает дуговой разряд, вызывающий ультрафиолетовое излучение. От этого люминофор на поверхности колбы светится в видимом для человека спектре.

Люминесцентная лампа с электромагнитным дросселем функционирует в двух режимах: зажигания и свечения.

Электронная пускорегулирующая аппаратура (ЭПРА) используется в светильниках нового поколения, увеличивает срок службы лампы и повышает КПД. В режиме свечения уровень напряжения на электродах допускает работу ЛЛ с перегоревшими спиралями, что невозможно при ЭмПРА. В схеме ЭПРА исключается использование стартеров.

Схема подключения электронного балласта

Электронные балласты достаточно дорогие и сложны для ремонта своими силами, поэтому имеет место широкое применение электромеханических дросселей.

Электронный балласт

Важно! Лампа с электронным балластом функционирует в четырех режимах: включения, предварительного разогревания, зажигания и горения.

Установка прибора в режим прозвонки

Термин «прозвонка» подразумевает проверку электрической цепи на целостность, наличие контакта. В каждом современном мультиметре есть такой режим, классическое расположение органов управления на приборах, это пакетный переключатель в центре корпуса, под жидкокристаллическим дисплеем. Его поворотом устанавливаются нужные режимы, на корпусе по кругу указаны их буквенные и символические обозначения, которые специалисты хорошо понимают, в нашем случае это знак диода или зуммера.

Примеры мест расположения символов прозвонки на разных мультиметрах

Кроме положения переключателя надо правильно подключить контактные измерительные щупы. Выше на правом снимке это отчетливо видно – в правом нижнем углу мультиметра черный щуп вставляется в самое нижнее отверстие со знаком заземления и буквами «СОМ». Красный вставляется в разъем выше с обозначением «VΩmA».

После установки органов управления в нужное положение можно проводить тестирование, прозвонку, но перед этим убедитесь, что прибор работает. Замкните металлические наконечники красного и черного щупа, при исправном приборе услышите характерный тон зуммера.

На экране высветятся нули, это означает, что в электроцепи нет обрыва или сопротивления, при размыкании цепи на дисплее установится «1».

Прозвонка

При включении в режим прозвонки прибор позволяет установить, не нарушено ли электрическое соединение. На приборной панели имеется специальный символ, которым обозначен этот режим.

Для проверки работоспособности электролампы следует:

  • Переключатель мультиметра поставить в режим прозвонки.
  • Один из щупов приложить к центральному контакту, а затем вторым – коснуться бокового.
Читайте также  Диммирование светодиодных ламп что это такое?

Такая проверка подходит для электроламп, оснащенных резьбовым цоколем. При исправности изделия раздастся сигнал, и на жидкокристаллическом дисплее тестера высветится цифра от 3 до 200 Ом.

Каждый раз перед тем, как приступить к измерениям, необходимо убедиться, что целостность измерительной цепи мультиметра не нарушена. Для этого на 1-2 секунды приложите один щуп к другому.

Как выполнить прозвонку лампочки смотрите в этом видео:

Этот способ не подходит для светодиодных изделий, а также КЛЛ, внутри которых содержится электронная схема. С помощью тестера можно произвести проверку состояния только выполненной из стекла спирали компактной люминесцентной лампы. С этой целью спираль следует отделить от цоколя и прозвонить проволочные выводы, которые соединены с платой электронного балласта.

Почему перегорают люминесцентные лампы

Часто лампы дневного света перегорают, что делает их похожими на обычные лампы накаливания. Во время включения светильника в колбе возникает электрическая дуга и происходит сильный нагрев спиральных электродов из вольфрама. Высокая температура приводит к разрушению нитей и перегоранию.

Для продления срока эксплуатации вольфрамовую нить покрывают слоем активного щелочного металла. Это стабилизирует тлеющий разряд между электродами и понижает температуру, сохраняя целостность нити на долгое время. Частое включение-выключение светильника разрушает защитное покрытие, оно осыпается. Разряд, проходя через оголенные части нити, точечно нагревает спираль, что приводит к перегоранию. Это видно на старых трубках как потемнение люминофора.

Перегоревшая лампа дневного света

Перегоревшая лампа дневного светаКолба не должна иметь повреждений, иначе лампа сгорит. Если на концах трубки обнаруживается оранжевое свечение, а лампа не загорается, – внутрь ЛДС попадает воздух. ЛЛ нужно менять.

: Как проверить лампу дневного света: изучаем внимательно

Проверка индикаторной отверткой

Чтобы в домашних условиях проверить на исправность лампочку, необязательно иметь под рукой мультиметр. Гораздо быстрее это сделать с помощью многофункциональной индикаторной отвёртки. Её отличие от обычного индикатора заключается в наличии батарейки-таблетки внутри корпуса. Работоспособность такой отвертки проверяется касанием пальцев её металлических контактов с торцов. При этом индикаторный светодиод внутри неё должен светиться.

Последовательность действий по проверке лампы накаливания следующая:

  1. В одну руку берут лампочку, касаясь резьбы (боковой контакт).
  2. В другую руку берут индикаторную отвёртку и металлическим стержнем касаются центрального контакта лампы, а большим пальцем – торца отвёртки. Таким образом, цепь замыкается через отвёртку, лампу и тело человека. Весь тест занимает всего пару секунд.

В заключение…

В заключение еще раз стоит отметить, что из-за сложности конструкции, выяснить работоспособность светодиодной или компактно люминесцентной лампы при помощи мультиметра или индикаторной отвертки не получится. Проверить такие лампочки можно только первым способом — подав на их контакты рабочее напряжение.

Вышеприведенные способы проверки бытовых лампочек будут работать и в случае с автомобильными лампами с нитью накала, а также люминесцентными лампами дневного света типа Т8.

Включение люминесцентной лампы без дросселя

Перегоревшим лампам можно дать вторую жизнь, если подключить их в схему без дросселя и стартера, применив постоянное напряжение. Для такой цели применяется двухполупериодный выпрямитель с удвоением напряжения. Когда яркость уменьшится со временем, нужно перевернуть лампу в светильнике, чтобы поменять полюса подключения. Следует подбирать радиоэлементы для схемы с напряжением до 900 В, такое значение достигается при пуске.

Схема подключения сгоревшей лампы

Утилизация прибора

Люминесцентные лампы содержат пары ртути, вредные для живых организмов и окружающей среды. Утилизация осуществляется лицензированными организациями, с которыми юридические лица заключают договоры. Выбрасывать ЛДС с обычным мусором запрещено.

Ремонт люминесцентных ламп несложен, если следовать схемам и инструкциям, и позволяет продлить срок службы осветительного оборудования.

Поделитесь в соц.сетях:

Источник: https://isanshop.ru/elektrika/proverka-avtomobil-nyh-lampochek-i-radiolamp-testerom.html

Тестер ламп

Прибор для проверки автомобильных ламп

Мне, как и некоторым другим людям нравятся радиолампы. Однако, в отличие от большинства любителей радиоламп у меня нет усилителя на них. Тем не менее, я очарован этими хрупкими устройствами, и я люблю читать и писать о них. У меня есть довольно обширная коллекция ламп, и время от времени я задумываюсь над идеей сделать тестер для них, или измеритель Ia-Va и Ia-Vg характеристик. Большинство ламп требует высоковольтного питания, что делает устройство тестера очень громоздким.

Но однажды мне в голову пришла такая идея: вместо того, чтобы измерить характеристики ламп в непрерывном режиме, почему бы не измерить их в импульсном режиме. Вся прелесть этого в том, что когда параметры ламп измеряются в импульсном режиме, все громоздкие высоковольтные источники питания могут быть устранены. Вместо этого можно зарядить конденсатор, который выдаст импульс в несколько сотен миллиампер в течение нескольких миллисекунд, необходимых для измерений.

Последние полгода было потрачено на проведение экспериментов, разработку схем и написания кода, чтобы сделать мечты реальностью.

Идея заключалась в том, чтобы сделать небольшое и дешевое устройство с широкими возможностями для измерения всех параметров лампы. Поскольку лампа не работает в непрерывном режиме, а только во время импульса длиной около миллисекунды, нет необходимости в  «тяжелых» источниках питания, так что все аппаратные средства могут быть размещены на печатной плате размером с открытку.

Вся система состоит из четырех компонентов:1) Основная плата.2) Источник питания 19.5В от старого ноутбука.3) Разъёмы для ламп.

4) Графический интерфейс пользователя (GUI), работающий на компьютере или ноутбуке. Тестер подключается к ПК через RS323 и вся работа с ним осуществляется через графический интерфейс. Тестер предназначен для измерения всех характеристик ламп.

Основные характеристики: измерение тока анода и управляющей сетки при напряжении от 20 до 400 В при токе до 200 мА (анод) и 50 мА (управляющая сетка). Смещение управляющей сетки может быть выбрано в пределах от 0 до -60 В, а напряжения накала может быть в диапазоне от 0 и 19,5В при токе 1,5А.

Аппаратная часть тестера показано на рисунке выше. Высокое напряжение для анода и экранной сетки создают два повышающие преобразователя на основе MOSFET транзисторов. Преобразователи заряжают два 100мкФ/400В конденсатора, которые дают импульс. Работа преобразователей и зарядка конденсаторов полностью контролируется PIC микроконтроллером, поэтому напряжение заряда конденсаторов может быть выбрано в диапазоне от 20 до 400В. Во время зарядки конденсаторов, лампы полностью отключены.

Как только конденсаторы заряжаются, на управляющую сетку подаётся импульс определенного (отрицательного) значения смещения. Это приводит  к прохождению тока по аноду и управляющей сетке. Эти токи вызывают падение напряжения на резисторе. Это падение напряжения усиливается и инвертируется ОУ, а потом оценивается и сохраняется в  микроконтроллере PIC. В действительности, измерение тока немного сложнее. Токи анода и управляющей сетки также немного разряжают конденсаторы.

Это падение напряжения добавляется к падению напряжения на резисторах. Поскольку падение напряжения на резисторах исчезает после окончания импульса, а падение напряжения из-за разряда конденсатора остается, можно провести различие между ними. Это требует измерения напряжений во время и сразу после импульса. В действительности же напряжение измеряется  непосредственно перед импульсом  для компенсации смещения.

Дискретное значение напряжения поступает в графический интерфейс, который выполняет необходимые математические вычисления.

Схема содержит несколько блоков, которые не отображаются на рисунке выше. Это генератор импульсов для управляющей сетки, два преобразователя напряжения, один источник питания для ОУ и один для отрицательного смещения сетки, микроконтроллер и источник питания для накала. Источник питания для накала состоит из силового ШИМ, который модулирует длительность импульса 19,5В с аккумулятора. В этом случае напряжение питания нити можно выбрать в диапазоне от 0 и 19,5 V.

Принципиальная схема

Принципиальная схема состоит из двух частей, аналоговой и цифровой. Цифровая часть будет обсуждаться дальше.

На рисунке выше показана аналоговая часть схемы. На первый взгляд схема пугает числом компонентов, но на самом деле не такая сложная, и довольно понятная. Схема состоит из нескольких самостоятельных блоков, каждый из которых будет кратко рассмотрен.

Верхний ряд компонентов в схеме представляет собой генератор смещения для управляющей сетки. Повышающий преобразователь состоит из T1, L1, D1, которые заряжают конденсатор С2, который дает импульс. Делитель напряжения на R4/R5 снижает 0-400V до 0-5V которые идут на микроконтроллер. Все эти компоненты контролируются микроконтроллером, так что напряжение в точности соответствует заданному значению. Резисторы R6 и R7 токоограничительные резисторы.

При высоком диапазоне измерений (0-50 мА) S1(реле) замкнуто, при низком диапазоне (0-5 мА) S1 открыто и не замыкает R6 и R7. Конденсатор C5 фильтрует отрицательные импульсы и ОУ IC1 инвертирует их в  положительные. Изначально развязывающий конденсатор C19 (и С20) был необходим для предотвращения лампы от колебаний. В окончательном варианте оказалось, что эти конденсаторы вызвали колебания, поэтому они были удалены.

Второй ряд компонентов на рисунке практически идентичен верхнему.

В нижней правой части рисунка расположена схема питания для накала. Как уже упоминалось ранее, напряжение питания нити регулируется при помощи ШИМ. Основной ШИМ-сигнал генерируется микроконтроллером и буфером на T16 и T17, которые управляют MOSFET транзистором T18. Фильтр, состоящий из L5 и C14/C15 разглаживает высокие пики тока, которые могут быть вызваны включением нити низкого сопротивления, особенно, когда в помещении холодно.

В нижней левой части рисунка расположена схема инвертирующего повышающего преобразователя. Транзисторы T7/T8 вместе с L3 и D7 создают нерегулируемое отрицательное напряжение для питания ОУ. Этот конвертер полностью управляется программой, которая   поддерживает выходное напряжение около -20 В. IC5 и IC6 обеспечивают регулируемое + / — 15 V питание для аналоговой части. Отрицательное смещение на управляющую сетку сделано на T9, T10, L4, D10 и C10. Выходное напряжение этого преобразователя переключается программно от   -20 до -65V в зависимости от выбранного диапазона смещения.

Остальные компоненты в цепи предназначены для контроля импульса смещения управляющей сетки. Эта часть схемы немного сложнее, так что только основные рабочие элементы будут описаны. Высота управляющего импульса регулируется ШИМ-сигналом с микроконтроллера.

Фильтр низких частот вокруг IC4 преобразует сигнал с ШИМ в напряжение постоянного тока от 0 до 5 В. Когда T15 открывается, это напряжение берётся относительно Gnd и, питание сетки отключается при -15 V (низкий диапазон измерений) или -60 В (высокий диапазон). T11-T13 и IC3 делает импульс на  управляющую сетку.

Точное соотношение между сигналом ШИМ с микроконтроллера и импульсами с сетки управляется программой.

Цифровая часть тестера, вероятно, наименее интересная часть всего проекта. Контроллер PIC16F874 используются в стандартной конфигурации, и работает на частоте 20 МГц. Тестер взаимодействует с компьютером через MAX232 по интерфейсу USART. В этом проекте использовано внутрисхемное программирование контроллера через специальный разъем.

Техническая реализация

К сожалению, печатная плата для тестера отсутствует т.к. он построен на макетной плате.

На рисунке выше тестер, собранный на макетной плате. Все компоненты были логически сгруппированы вместе. Расположение проводников не является критическим, однако надо учесть некоторые моменты. В первую очередь следует помнить, что некоторые части схемы имеют очень высокое напряжение — более 400 В. Позаботьтесь, чтобы они были хорошо заизолированы и не касались низковольтной части схемы. Во-вторых, некоторые части схемы, имеют очень высокий уровень пиковых токов. Делайте эти проводники короче, и подключайте их непосредственно к клеммам питания. И, наконец, во избежание контуров заземления, разводите землю «звездой»

Читайте также  Освещение в гараж диодные лампы

Кроме резисторов с точностью 1%(или лучше) качество компонентов не очень важно. Я использовал то, что было. BF487 можно заменить любым слабым транзистором NPN структуры с BVceo 400В и выше. Вместо всех остальных биполярных транзисторов NPN или PNP может быть использованы те, которые есть. Катушки индуктивности всегда считаются «трудным» компонентом. Я выпаял их из старой печатной платы. Предпочтительно использовать катушки выдерживающие ток 1,2 A. Реле также не критично. Вероятно, три MC34071 могут быть заменены одним LM324. Для IC3 лучше всего использовать LM741.

Графический интерфейс пользователя

Тестер работает с графическим интерфейсом пользователя (GUI) на компьютере. Графический интерфейс написан на Visual Basic 6.0. Чтобы запустить GUI, надо просто скопировать исполняемый файл в пустую папку и дважды щелкнуть по нему. Если все работает как надо, то должно появиться окно:

Я пытался сделать работу с тестером как можно более простой и понятной. Интерфейс разделен на три части: «Выбор типа измерения», «График выхода» и «Связь». Измерение начинается с выбора типа измерений. Выбор типа измерения автоматически загружает значения по умолчанию для различных измерений. Основным показателем является переменная X-Axis, которая может быть задана вручную.

Также могут быть заданы точки измерения. По умолчанию эти точки измерения равномерно распределяются в течение интервала измерения. В случае измерения более одного значения, например, когда много Ia (Vgrid) значений измеряются при различных напряжениях анода, которые должны быть введены в поле «stepping variable», значения в этой области должны быть отделены друг от друга пробелами.

Также есть ручной выбор диапазона. Когда пользователь считает, что анодный ток будет выше, чем 20 мА, или ток управляющей сетки более 5 мА, соответствующий флажок должен быть установлен. Это означает, что все измерения проводятся в высоком диапазоне, и, следовательно, с меньшей точностью. Может быть указано время между измерениями. Это может быть использовано, например, в Ia (V_filament) измерении, чтобы дать прогреться нити накала.

Кнопка «Measure Curve» имеет двойную функцию. До первого измерения, его подпись  «Turn on Filament». После того, как «Turn on Filament » кнопка была нажата, ее подпись изменится на «Measure Curve». При нажатии на нее снова измерение началось. Когда нажата кнопка «Abort » измерения прекращаются сразу, а накал остается включённым. При нажатии на кнопку «Abort » ещё раз отключается и накал.

«Curve Output» отображает данные измерений. По умолчанию отображается  только анодный ток. Минимальные и максимальные значения осей могут быть заданы. Некоторые элементарные проверки введенных значений осуществляются на основе выбранного типа измерений. Верхний ряд кнопок предварительной настройки дает возможность быстро менять оси графика для Ia (V_anode) типа измерений. Нижний ряд кнопок предварительной настройки предназначен для Ia (V_grid) типа измерений.

При нажатии кнопки «Save Data» вся матрица измерений записываются во внешний файл для дальнейшей обработки, например, в Excel. Каждая строка в файле данных представляет собой одно измерение. Файл хранится в формате  *. UDT . В первом столбце указано количество измерений каждого сигнала, в то время как вторая колонка содержит номер сигнала. Следующие шесть колон содержат ток анода и управляющей сетки (в мА), и напряжения управ. сетки, анода, и накала.

При нажатии на кнопку «Store», вся матрица измерений копируется во вторую матрицу данных (dblStoreMX), которая является внутренней для программы. Нажав кнопку «Recall» данные хранимые  в этой матрице могут быть добавлены в график. Таким образом, становится возможным сравнить характеристики различных ламп. После того, как кнопка «Recall» была нажата, название меняется на «Dismiss».

Нажатие на нее снова, удаляет добавленные данные из графика, но оставляет основные.

Последняя часть, связь, была добавлена ​​в основном для отладки. Это позволяет детально изучить связь между GUI и тестером. Только поля ввода Dropbox, который позволяет пользователю выбрать нужный номер COM порта, кнопки отключения COM-порта, а также флажок, который при проверке вводит 2 секундные задержки. Если теряется связь с тестером, вполне возможно, что тестер по прежнему ждет сигнал, который не придет. Чтобы сбросить тестер в таком случае кнопка «ESC» может быть использована. Прием символа ESC будет всегда вызвать сброс в тестере.

Программное обеспечение

Аппаратная часть не работает без прошивки микроконтроллера, и управлять тестером нужно при помощи графического интерфейса пользователя. Обе программы можно скачать здесь. Архив содержит следующие файлы:Файл UTRACE21.HEX – прошивка МКФайл version1p2.exe графический интерфейс пользователя.

Если выскакивает окно с сообщением что файл MSCOMM32.OCX отсутствует, вы должны установить этот файл.Файл MSCOMM32.OCX  этот компонент Microsoft заботится о доступе к последовательному порту COM.

Файл «version1pt.

exe» является тестовой версией графического интерфейса, который берёт заранее прописанные значения для проверки работоспособности программы без тестера.

Послесловие

Цена этого тестера значительно меньше 50 евро, и хотя очевидно, что, есть  намного лучшие и более точные измерительные приборы, это идеальный инструмент, чтобы быстро получить представление о характеристиках конкретной лампы. Если у вас есть как и у меня, коробки со старыми лампами, и вам интересно узнать что «они все еще играют», то этот тестер это просто идеальный инструмент. В настоящее время он, естественно, не совершенен. Я многому научился за время построения этого проекта, особенно тому, как некоторые вещи можно было сделать лучше.

Оригинал статьи

Источник: https://cxem.net/sound/raznoe/utracer.php

Как проверить лампочку мультиметром: способы прозвонить тестером лампы накаливания, галогеновые, автомобильные

Прибор для проверки автомобильных ламп

Чаще всего, если лампочка перегорела,люди ее выбрасывают. И если обыкновенная лампочка накаливания является дешевой,то цена на автомобильные галогеновые осветительные приборы ощутима. В такомслучае необходимо ознакомиться с тем, как проверить лампочку мультиметром,т.к. эта процедура имеет множество особенностей.

Установка прибора в нужный режим для проверки

Мультиметр (тестер) – это компактноеустройство, позволяющее выполнять различные электрические измерения. Оно удобнодля идентификации повреждений в электросети и электроинструментах.

Процедура прозвонки предполагает проверку целостностиэлектроцепи и наличия прямого контакта. В большинстве моделей тестеров этотрежим встроен изначально. Для его активации нужно повернуть переключатель вцентре устройства в соответствующее положение (к значку зуммера или диода).

Кроме того, необходимо верно подсоединитьщупы-измерители. Щуп черного цвета следует вставить в отверстия с обозначением «COM»и значком заземления. Измеритель красного цвета нужно вставить в разъем сознаком «VΩmA». Тестирование можно начинать сразу после постановки элементовуправления в необходимое положение.

Наконечники из металла нужно замкнуть, после чегодолжен раздаться пищащий звук зуммера. На дисплее отобразятся нулевые значения,которые означают, что нет никакого сопротивления или разрыва. Если же цепь 220Вольт разомкнулась, на экране отобразится цифра “1”.

Способы узнать, работает ли лампочка, с помощью цифрового тестера

Для проверки лампочки ее можно ввинтитьв другую люстру или фонарик. Однако это не во всех случаях можно сделать.Иногда диаметр цоколя лампочки отличается от разъема на светильнике либо в домебольше нет устройств с аналогичным патроном.

Приобретая лампы в магазине, можно увидеть, какконсультант-продавец тестирует их с применением мультиметра. В этомизмерительном приборе есть специальные разъемы, позволяющие проверять любыетипы лампочек. Подобное тестирование можно выполнить и своими руками в домашнихусловиях.

В режиме прозвонки

Чтобы узнать, работает ли лампочка, спомощью тестера, сначала нужно установить на нем соответствующий режим. Послеэтого одним измерительным щупом нужно дотронуться до контакта в центреобыкновенной или галогеновой лампы, а другим – до контакта на резьбе цоколя.

Если лампочка исправна, мультиметр запищит, а на егоэкране отобразится цифра от 3 до 200 Ом.

Перед каждым тестированием нужно замыкать измерительныещупы друг с другом, чтобы удостовериться в исправности измерительногооборудования.

Лампочки светодиодного или люминесцентного типаневозможно проверить этим способом, т.к. в них встроена электронная плата. Втаком случае можно лишь отдельно протестировать спираль из стеклалюминесцентного устройства. Для этой цели спираль необходимо аккуратно снять сцоколя и проверить выводные кабели, которые подключены к электронной плате.

В режиме проверки сопротивления

Существует самый точный способ проверкиспиральных лампочек с применением тестера. При этом можно не только определитьработоспособность осветительного устройства, но и выявить его сопротивление.

Для проверки переключатель тестера необходимопоместить в положение 200 Ом, после чего дотронуться измерительными щупамиэлектроконтактов лампочки по аналогии с тестированием в режиме прозвонки. Втаком случае никакого звукового уведомления не будет, а на экране тестераотобразится точный показатель сопротивления в омах. Если на дисплееотображается цифра “1”, значит, внутри лампочки имеется обрыв.

По сопротивлению спирали можно узнать ее мощность.Например, лампочки с цоколем вида E27 или E14 с сопротивлением 150 Ом обладаютмощностью 25 Вт, устройства на 90-100 Ом имеют мощность 40 Вт, присопротивлении 25-28 Ом мощность лампочки составляет 150 Вт.

Если вместо значения сопротивления на дисплее тестераотображается значок бесконечности, значит, осветительный прибор неисправен.

При проверке сопротивления необходимо учитывать, чтополученные показатели могут несколько разниться вследствие плохого контактаизмерительных щупов с мультиметром.

Можно ли проверить индикаторной отверткой

Для тестирования лампочки наработоспособность можно воспользоваться индикаторной отверткой. От полноценноготестера это устройство отличается лишь тем, что внутри у него есть батарейки.Исправность отвертки можно проверить, коснувшись пальцами контактов из металла,которые находятся на ее торцах. При касании светодиод-индикатор должензагореться.

Проверка лампы с помощью отвертки-индикаторавыполняется по следующей схеме:

  1. Осветительное устройство нужно взять водну руку за боковой контакт.
  2. Во вторую руку необходимо взятьотвертку-индикатор и дотронуться ее стержнем до контакта в центре лампы, аодним из пальцев – торцевой части отвертки. В результате получится замкнутаяцепь (через лампу, отвертку-индикатор и человеческое тело). Длительностьтестирование – 2-3 секунды.

Индикаторной отверткой невозможнопроверить автомобильные люминесцентные и светодиодные лампы. Такиеосветительные устройства можно протестировать только с помощью подачиэлектричества на их контакты. При отсутствии специализированных знаний в сфереэлектрики, эту работу лучше доверить опытным специалистам.

Предыдущая

Источник: https://svetilnik.info/lampy-i-svetilniki/kkak-mozhno-multimetrom-proverit-rabotosposobnost-lampochki.html

Как проверить автомобильную лампочку мультиметром?

Прибор для проверки автомобильных ламп

Не всегда визуальный осмотр лампы накаливания позволяет сделать вывод о её непригодности. Бывают случаи, когда вольфрамовая нить не имеет повреждений, но лампочка в светильнике не светится. Установить причину и тем самым подтвердить или опровергнуть неисправность лампы можно несколькими способами. О том, как это сделать, можно узнать из этой статьи.

Устройство люминесцентной лампы

Лампа дневного света состоит из одного стеклянного цилиндра с наружным диаметром 12, 16, 26 или 38 мм. Причем он может быть как прямым, так и изогнутой конструкции в виде буквы U или кольца и т. п.

С торцов цилиндра в металлические заглушки встроены в диэлектрическую пластину две контактные ножки под цоколь светильника, на которые с внутренней стороны припаяны электроды, схожие по конструкции с нитями ламп накаливания.

Из колб люминесцентных ламп откачивается воздух, а вместо него добавляется инертный газ с небольшой капелькой ртути (около 30 мг) или сплава ртути с Индием и другими металлами.