Содержание
- 1 Укрм — установка компенсации реактивной мощности
- 2 Что такое конденсаторные установки: виды и применение
- 3 Установка компенсации реактивной мощности (УКРМ)
- 4 Зачем нужна компенсация реактивной мощности: схемы, видео — Asutpp
- 5 Конденсаторные установки компенсации реактивной мощности
- 5.1 Понятие об активной и реактивной мощностях
- 5.2 Особенности установки компенсационного оборудования
- 5.3 Эффективность применения конденсаторных установок
- 5.4 Выбор режима компенсации
- 5.5 Выбор типа компенсации
- 5.6 Нерегулируемая компенсация
- 5.7 Автоматическая компенсация
- 5.8 Динамическая компенсация
- 5.9 Учет условий эксплуатации и содержания гармоник в сети
- 5.10 Учет условий эксплуатации
- 5.11 Учет воздействия гармоник
- 6 УКРМ: что это такое и зачем нужны компенсаторы реактивной мощности
- 7 Принцип работы компенсатора реактивной мощности
- 8 Компенсация реактивной мощности: способы и средства
- 9 Установки для компенсации реактивной мощности (КРМ), повышающие надежность и экономичность в системе электроснабжения
- 9.1 К ним относятся:
- 9.2 преимущества использования установок крм, достигаемые за счет использования технологических инноваций
- 9.3 Основное предназначение УКРМ
- 9.4 Основные условия, свойственные для эксплуатации УКРМ
- 9.5 Модернизированные установки КРМ
- 9.6 Конденсаторные установки, применяемые для низковольтных сетей
- 9.7 Достоинства низковольтных конденсаторных установок
Укрм — установка компенсации реактивной мощности
Нагрузка предприятий подразделяется на активную, индуктивную и емкостную, все эти виды мощностей зависят от типа работающего оборудования.
Существование реактивной энергии несет отрицательное воздействие на электрические сети, создает электромагнитные поля в электрических устройствах.
Существование реактивного тока создает дополнительную нагрузку, приводящую к снижению качества электроэнергии, влекущую увеличение сечений токовых проводников.
Назначение устройства компенсации реактивной мощности
Рис. Внешний вид УКРМ 6(10) кВ
Основным предназначением устройства является снижение действия реактивной мощности, служит для увеличения и поддержания на определенном нормативном уровне величины коэффициента мощности в трехфазных распределительных сетях. Главное предназначение УКРМ, является аккумуляция в конденсаторах реактивной мощности. Это действие помогает разгрузить электрическую сеть от перетоков реактивной мощности, происходит стабилизация напряжения, увеличивается доля активной мощности.
Основные функции УКРМ
- Понижение потребляемого нагрузочного тока на 30-50%.
- Снижение составляющих элементов распределительной сети, увеличение их срока службы.
- Повышение надежности и пропускной способности электрической сети.
- Понижение тепловых потерь электрического тока.
- Снижение воздействия высших гармоник.
- Понижение несимметричности фаз, сглаживание сетевых помех.
- Снижение до минимума стоимости индуктивной мощности.
Установка компенсации реактивной мощности УКРМ отличается рядом преимуществ, обусловленных применением конденсаторов, дополненных третьим уровнем безопасности в виде полипропиленовой сегментируемой пленки пропитанной специальной жидкостью, обеспечивающих надежное использование, долговечность, невысокую стоимость при выполнении работ по техническому обслуживанию и ремонту.
Наличие в конденсаторной установке УКРМ специализированных тиристорных быстродействующих пускателей, работающих с опережением по времени для коммутации фазовых конденсаторов, срабатывающих при изменении cosφ, продляет время их безотказной работы.
Рис. Внешний вид тиристора для коммутации конденсаторных установок.
Для обеспечения регулирования cosj в автоматическом режиме с передачей информации на PC с контролем в сети высших гармоник тока и напряжения, применяются контроллеры с контакторным переключением.
Для повышения качества работы УКРМ в установке присутствует фильтр нечетных гармоник и устройства терморегуляции, для обнаружения неисправностей продумана система индикации.
Все оборудование помещается в блок-контейнер, снабженный вентиляцией и обогревом с автоматическим управлением. Устройства обеспечивают комфортное и удобное обслуживание при низких температурах до -60о С.
Модульный тип построения, способствует поэтапному наращиванию мощности УКРМ.
Защита конденсаторных установок
Для безопасной работы устройства предусмотрены защиты:
- Блокировки, обеспечивающие защиту от прикосновения к токоведущим частям, находящимся под напряжением.
- Защита, предохраняющая установку от короткого замыкания конденсатора.
- От превышения нормы электрического тока.
- От перенапряжения.
- От перекоса токов по фазам устройства.
- Электромагнитное блокирование, предохраняющее от ошибочного включения коммутационных аппаратов УКРМ.
- Механическое блокирование включения заземляющих ножей в работающей установке.
- Наличие контактного выключателя, отключающего установку при открывании дверей при включенном оборудовании.
- Тепловая защита, включающая принудительное охлаждение при повышении температуры конденсаторных батарей.
- Термодатчик включающий обогрев в установке при понижении температуры.
Достоинства устройства конденсаторной установки УКРМ
- Наличие трехфазных пожарозащищенных экологических конденсаторов.
- Применение в устройстве специальных предохранителей и разрядников сопротивления с обкладками из полимерной металлизированной пленки с минеральной пропиткой.
- Регуляторы реактивной мощности и цифровые анализаторы с дистанционным управлением.
- Для повышения сейсмоустойчивости и вибрационной стойкости применяются специальные полимерные изоляторы.
Типы УКРМ
Существуют несколько типов установок УКРМ, применяемых в сетях 6-10 кВ, это:
- Нерегулируемые установки, выполненные в модульном построении, состоящем из нескольких фиксированных ступеней,коммутация происходит в ручном режиме при отсутствии токов нагрузки.
- Автоматические или регулируемые, базовое устройство предназначено для автоматического регулирования ступеней, каждая из которых состоит из трех конденсаторов, соединенных в звезду, операции по осуществлению коммутационных действий производят автоматически с использованием электронного блока, определяющего мощность и время включения.
- Полуавтоматические установки применяются для снижения стоимости устройства компенсации реактивной мощности, цена становится доступной с одновременным сохранением качества работы устройства. Для этого в устройстве применяются, как регулированные ступени, так и фиксированные.
- Высоковольтные установки с фильтрами, применяемыми для защиты от нелинейных гармонических искажений защитных антирезонансных дросселей. Применяются такие установки совместно с устройствами, генерирующими явление в сети высших гармоник, это: устройства, обеспечивающие плавный пуск и частотные преобразователи.
Таблица №1 Типы конденсаторных установок с указанием мощности ступеней.
В модульных установках КРМ ступени конструктивно объединены в модуль
Особенности подключения УКРМ
Самым оптимальным подключением устройства компенсации реактивной мощности, является установка устройства в непосредственной близости к потребителю (индивидуальная компенсация). В этом случае, стоимость установки компенсации реактивной мощности, состоящая из суммы стоимости внедрения и дальнейшего обслуживания составляет значительную величину.
При объединении нагрузок в единый комплекс по потреблению реактивной мощности, целесообразно применять групповую компенсацию. В этом случае применение цена устройства реактивной мощности становится наиболее приемлемой при внедрении в работу, но менее выгодной для пользователей из-за понижения активных потерь, в электрической сети оказывающих влияние на экономию средств.
Возможно, подключение устройства КРМ в виде отдельного оборудования с индивидуальным кабельным вводом, так и в составе НКУ, к примеру, в составе главного распределительного щита.
Расчет УКРМ
Для выбора УКРМ производится подсчет полной суммарной мощности конденсаторных батарей электроустановки, по формуле:
Qc = Px (tg(1)-tg(ф2)).
Где Р – активная мощность электроустановкиПоказания (tg(ф1) -tg(ф2)) находятся по данным cos(ф1) и cos(ф2)Значение cos(ф1) коэффициента мощности до установки УКРМ
Значение cos(ф2) коэффициента мощности после установки УКРМ, задается электроснабжающим предприятием.
Формула мощности приобретает такой вид:
Qc = P x k,
k- табличный коэффициент, соответствующий значениям коэффициента мощности cos(ф2)
Мощность УКРМ определяется конкретно для всех участков электрической сети в зависимости от характера нагрузки и способа компенсации.
Только после проведенного в полной мере анализа показателей, полученных при диагностике данных, появляется возможность выбора регулируемых или нерегулируемых УКРМ.
Обозначается степень дробления мощности по ступеням, время и скорость повторного срабатывания ступеней, выявляется необходимость использования в конденсаторной установке компенсации реактивной мощности для снижения коэффициента несинусоидальности в питающей сети, фильтрации нечетных гармоник, а также отсутствие эффекта резонанса. Это обеспечивает качество электроэнергии.
Таблица№2 Расчет мощности конденсаторов для УКРМ
Необходимо знать, что нельзя производить полную компенсацию реактивной мощности до единицы, это приводит к перекомпенсации, которая может произойти в результате непостоянного значения активной мощности потребителя, а также в результате случайных факторов. Желательное значение cosф2 от 0,90 до 0,95.
Источник: http://enargys.ru/ukrm-ustanovka-kompensatsii-reaktivnoy-moshhnosti/
Что такое конденсаторные установки: виды и применение
Конденсаторная установка – это электроустановка, которая состоит из конденсаторов и дополнительного электрооборудования, и применяется для компенсации реактивной мощности электрооборудования. Вследствие работы трансформаторов, электродвигателей, пусковых устройств, происходит производство, как активной энергии, так и реактивной.
Принцип действия
Активная энергия применяется по назначению и превращается в тепловую, механическую, а реактивная отсылается на создание электромагнитных полей и не дает никакой пользы. При этом создаёт дополнительную нагрузку на кабельные линии и проекты электроснабжения приходится разрабатывать с учетом появления реактивной мощности. А реактивная мощность оплачивается по счетчику согласно тарифу наряду с активной, а это довольно большая часть потребления электроэнергии.
Конденсаторные установки снижают потерю в кабельных линиях, что приводит соответственно к уменьшению общего энергопотребления и снижению токовой нагрузки на линию.
Конструкция конденсаторной установки выполнена в виде электроприбора, состоящего из конденсатора и дополнительного электрического оборудования. Данная установка предназначена для компенсации реактивной мощности оборудования, создающей электромагнитные поля и дополнительную нагрузку на электроприборы.
Для регулировки нагрузки используются различные устройства, в том числе конденсаторы, контакторы, контроллеры и защитная аппаратура. С их помощью каждая конденсаторная установка может легко компенсировать реактивную мощность. Они довольно просты в монтаже и эксплуатации, работают практически бесшумно, способствуют сокращению потерь в кабельных линиях.
Принцип действия конденсаторных установок основан на эффекте динамической или коммутируемой компенсации реактивной мощности. С этой целью применяется специальная система конденсаторов, располагающихся в определенной последовательности. Непосредственная коммутация осуществляется с помощью контакторов или тиристоров. Первый вариант используется в большинстве конденсаторных установок с электромеханическими реле. Они обладают универсальной конструкцией, просты в использовании, стоят сравнительно недорого.
Выбираем электроды для сварки инвертором
Второй вариант с использованием тиристорных систем считается более дорогим, однако он хорошо зарекомендовал себя в сетях с резко изменяющимися нагрузками. Подключение любого устройства может производиться на любых участках электрической сети, независимо от принципа действия.
Назначение установок КРМ
Конденсаторные установки известны еще и как установки КРМ – то есть компенсаторы реактивной мощности. Они широко используются в энергетике, трансформаторах, асинхронных двигателях и другом оборудовании с появляющейся реактивной мощностью. Данное явление доставляет определенные неприятности подключенному оборудованию из-за создания дополнительного напряжения в сети. Для снижения негативных последствий и предназначены установки, компенсирующие реактивную мощность.
Очень часто возникает вопрос, зачем нужна конденсаторная установка для чего используется это устройство? Основной функцией данных систем является поддержание заданного уровня коэффициента мощности потребителя. С этой целью в реальном времени отслеживаются изменения нагрузки, после чего в нужный момент происходит включение или отключение нужного количества конденсаторных батарей.
Большая часть нагрузки современных электрических сетей создается на промышленных предприятиях электродвигателями, трансформаторами и другим оборудованием с электромагнитными системами. Для их работы используется реактивная энергия, под действием которой появляется фазовый сдвиг между током и напряжением. При включении нагрузки происходит потребление не только активной, но и реактивной энергии. В связи с этим полная мощность увеличивается в среднем на 20-25% относительно активной мощности. Это соотношение и будет коэффициентом мощности.
Для того чтобы исключить попадание в сеть реактивной мощности применяются различные виды конденсаторных установок. За счет этого она вырабатывается и остается на месте, где и потребляется электрическими нагрузками.
Существует несколько видов установок компенсации реактивной мощности: автоматические высоковольтные и низковольтные, тиристорные, фильтрокомпенсирующие, а также тиристорные установки с фильтрацией высших гармоник. Отдельно следует отметить конденсаторные установки нерегулируемые, компенсирующие реактивную мощность постоянных нагрузок. Типичными примерами такого оборудования различные виды насосов, особенно используемых в системах тепло- и водоснабжения. В этом случае коэффициент мощности повышается за счет приложения постоянной мощности конденсаторов напрямую к реактивной нагрузке.
Электростанции России (ТЭС, ГЭС, ГАЭС, АЭС)
Преимущества использования конденсаторных установок
Основными положительными качествами компенсационных систем является отсутствие каких-либо вращающихся частей, небольшие удельные потери активной мощности, возможность подбора любой практически необходимой мощности компенсации, возможность подключения к любой точке сети, простая эксплуатация и монтаж, отсутствие шумов во время работы, относительно низкие капиталовложения.
Конденсаторные установки бывают в двух вариантах:
- Модульные – используют для компенсирования реактивной мощности в групповых сетях и сетях энергообеспечения на крупных и средних предприятиях.
- Моноблочные – имеют широкое применение для компенсирования реактивной мощности в групповых сетях на малых предприятиях.
Если предприятие работает, круглые сутки и образование реактивной энергии случается постоянно, то выгодно чтобы конденсаторные установки работали круглые сутки. Но если на производстве, работа распределена неравномерно, предположим, в ночное время нагрузка значительно снижается, необходимо обеспечивать их выключение, так как непрерывная работа может привести к лишнему увеличению напряжения в электросетях.
Таким производствам больше подходят установки с автоматической регулировкой. Они имеют автоматический регулятор, он постоянно следит за значение коэффициента мощности, и, регулирует количество подключенных батарей, что позволяет максимально возмещать её объем.
Срок окупаемости при правильном выборе, может составить от шести месяцев до полутора лет.
Источник: https://electric-220.ru/news/kondensatornye_ustanovki/2011-04-28-20
Установка компенсации реактивной мощности (УКРМ)
Установка компенсации реактивной мощности УКРМ – конструкция, рассчитанная для авто регулировки коэффициента мощности (cosφ) электрических установок, размещенных на промышленности и в распределительных сетях, напряжение которых составляет не более 0,69 кВ при частоте 50 Гц. К тому же, УКРМ установка предназначена обеспечивать рациональное потребление электроэнергии. В данных конструкциях размещают особые конденсаторы, задача которых компенсировать индуктивную составляющую реактивной силы при помощи емкостной части.
Назначение УКРМ установки
Подобная конструкция применяется в 3-фазных электросетях. Помимо удерживания установленного значения cosφ, конструкция также предназначена для:
- снижения количества используемого тока;
- уменьшения нагрузки на компоненты электросети, это способствует увеличению их ресурса и продлевает длительность работоспособности;
- увеличения производительности электросети, а также повышение ее надежности;
- снижения тепловых потоков токов;
- подавления помех в электросети;
- сокращения трат за используемую реактивную энергию.
Конденсаторная УКРМ установка обладает массой преимуществ, а именно:
- Функциональность. Используя модуль УКРМ можно разгрузить работу силовых трансформаторов, подсоединить добавочную нагрузку и многое другое. При этом систему УКРМ можно применять в любых условиях.
- Высокая степень защиты во время эксплуатации. Модульная установка УКРМ отличается стойкость к различным токам КЗ. Шины конструкции закрываются фидерами и крышка, при этом в шкафу УКРМ отсутствуют движущиеся части. За счет компенсирования мощности происходит увеличения срока работы оборудования. Также в конструкции системы УКРМ установлена дверь на вводной ячейке с блокировкой, этот факт исключает открытие дверки при появлении напряжения на сборных шинах.
- Шкафы УКРМ просты в подключении и применении. Монтаж системы УКРМ процесс не сложный. Однако, во время монтажа следует четко соблюдать требования, указанные в документации, прилагаемой к оборудованию. Управление установкой УКРМ чаще всего осуществляется в автоматическом режиме. Хотя данным оборудованием также можно управлять в ручном режиме.
Установку и монтаж установок УКРМ предпочтительно производить в производственных помещениях закрытого типа. Также помещение должно соответствовать следующим требованиям:
- оснащаться отопительной системой;
- иметь систему искусственной вентиляции;
- температура в помещении должна быть не ниже +1°С и не выше +35°С;
- избегать наличия токопроводящей пыли;
- в помещении не должны находиться концентрированные агрессивные газы, разрушающе влияющие на металл и изоляционное покрытие;
- влажность не должна превышать 75%, при условии, что температура воздуха составляет +15°С.
Характеристики УКРМ установок
Каждый тип конструкции УКРМ имеет разные характеристики. В таблице приведены основные показатели данных значений.
Технические характеристики системы УКРМ | Значение |
Номинальное напряжение, кВ | 6,3; 10,5 |
Значение тока, для U 6,3 кВ, А | от 13,75 до 659,83 |
Значение тока, для U 10,5 кВ, А | от 8,25 до 395,90 |
Частота, Гц | 50 |
Мощность, кВАр | 150 — 7200 |
Масса установки, кг | от 480 до 4125 |
Напряжение прочих цепей, В | 220 |
Желаете купить УКРМ установку? Тогда вы попали по адресу! Компания «СКМ-ЭЛЕКТРО» занимается производством качественных и надежных УКРМ установок. На предприятии компании работают квалифицированные и грамотные специалисты. Каждая установка УКРМ, которую можно купить в нашей компании, собирается с применением импортных запчастей. К тому же, специалисты компании готовы не только разработать оборудование, но также ввести его в эксплуатацию.
Интересует более детальная информация? Тогда звоните по указанным контактным телефонным номерам. Менеджеры компании «СКМ-ЭЛЕКТРО» ответят на все возникшие вопросы и оформят заказ на приобретение необходимых систем. Каждый клиентский заказ выполняется в точно оговоренные сроки. Также связаться с менеджерами компании можно отправив письмо на e-mail.
Звоните и заказывайте!!! Будем рады сообщить Вам всю необходимую информацию.
8 (495) 744-29-33
8 (800) 555-05-74
Источник: https://www.skm-electro.ru/blog/ustanovka-kompensacii-moshnosti
Зачем нужна компенсация реактивной мощности: схемы, видео — Asutpp
Слишком высокая или как еще её называют, реактивная энергия и мощность, способствуют значительному ухудшению работы электрических сетей и систем. Мы предлагаем рассмотреть в нашей статье как производится автоматическая компенсация реактивной мощности (крм) и перекомпенсация в сетях на предприятиях, в квартире и в быту.
Зачем нужна компенсация реактивной мощности
Чем больше требуется энергии — тем выше становится уровень потребления топлива. И это не всегда оправдано. Компенсация мощности, т.е, её правильный расчет, поможет сэкономить в промышленных распределительных электросетях на производстве до 50 % затрачиваемого топлива, а в некоторых случаях и больше.
Нужно понимать, что тем больше ресурсов затрачено на производство, тем выше будет цена конечного продукта. При возможности снизить стоимость изготовления товара, производитель либо предприниматель, сможет снизить его цену, чем привлечь потенциальных клиентов и потребителей.
Как наглядный пример – пара диаграмм ниже. Эти векторы визуально передают полный эффект от работы установки.
Диаграмма до работы установкиДиаграмма после работы установки
Кроме этого, мы также избавляемся от потерь в электросетях, от чего эффект следующий:
- напряжение ровное, без перепадов;
- увеличивается долговечность проводов (abb – авв, аку) и индукционной обмотки в жилых помещениях и на заводе;
- значительная экономия на работе домашних трансформаторов и выпрямителей тока;
- проведенная компенсация мощности и реактивной энергии значительно продлит время работы мощных устройств (асинхронный двигатель трехфазный и однофазный).
- значительное снижение электрических затрат.
Общая схема преобразователя
Теория и практика
Чаще всего реактивная энергия и мощность потребляется при использовании трехфазного асинхронного двигателя, здесь и нужна компенсация сильнее всего. Согласно последним данным: 40 % — потребляют двигатели (от 10 кв), 30 – трансформаторы, 10 – преобразователи и выпрямители, 8% — расход освещения
Для того чтобы этот показатель уменьшить, используются конденсаторные устройства или установки. Но существует огромное количество подтипов этих электроприборов. Какие бывают конденсаторные установки и как они работают?
: Что такое компенсация реактивной мощности и для чего она нужна?
Для того чтобы производилась компенсация энергии и реактивной мощности конденсаторными батареями и синхронными двигателями, понадобится установка энергосбережения. Чаще всего используют подобные устройства с реле, хотя вместо него может быть установлен контактор либо тиристор. Дома используются релейные приборы дуговой компенсации. Но если проводится компенсация реактивной энергии и мощности на заводах, у трансформаторов (там, где несимметричная нагрузка), то намного целесообразнее применять тиристорные устройства.
В отдельных случаях возможно использование комбинированных устройств, это приборы, которые одновременно работают и через линейный преобразователь, и через реле.
Чем поможет использование установок:
- подстанция снизит скачки напряжения;
- электрические сети станут более безопасными для работы электрических приборов, исчезнут проблемы компенсации электричеста и мощности у холодильных установок и сварочных аппаратов;
- кроме этого, они очень просты в установке и эксплуатации.
Как установить конденсаторные устройства
Предварительно понадобится схема работы электросети, и документы от ПУЭ, по которым и проводится решение о компенсации энергии и реактивной мощности ДСП. Далее необходим экономический расчет:
- сумма потребления энергии всеми приборами (это печи, цод, автоматические машины, холодильные установки и прочее);
- сумма поступления тока в сеть;
- вычисление потерь в цепях до поступления энергии к приборам, и после этого поступления;
- частотный анализ.
Далее нужно сгенерировать часть мощности сразу на месте её поступления в сеть при помощи генератора. Это называется централизованная компенсация. Она может проводится также при помощи установки cos, electric, schneider, tg.
Но существует также индивидуальная однофазная компенсация реактивной энергии и мощности (либо поперечная), её цена намного ниже. В этом случае производится установка упорядоченных регулирующих устройств (конденсаторов), непосредственно у каждого потребителя питания. Это оптимальный выход, если регулируется трехфазный двигатель или электропривод. Но у этого типа компенсации есть существенный недостаток – она не регулируется, и поэтому называется еще и нерегулируемой или нелинейной.
Статические компенсаторы или тиристоры работают при помощи взаимоиндукции. В этом случае переключение производят при помощи двух или более тиристоров. Самый простой и безопасный метод, но его существенным недостатком является то, что гармоники генерируются вручную, что значительно усложняет процесс монтажа.
Продольная компенсация
Продольная компенсация производится методом варистора или разрядника.
Продольная компенсация реактивной мощности
Сам процесс происходит из-за наличия резонанса, который образуется из-за направления индуктивных зарядов друг другу на встречу. Данная технология и теория компенсации мощности применяется для реактивных и тяговых двигателей, сталеплавильной или станочной техники Гармоники, к примеру, и именуется еще искусственная.
Техническая сторона компенсации
Существует огромное количество производителей и типов установок конденсаторных установок:
- тиристорные;
- регуляторы на ферросплавном материале (Чехия);
- резисторные (производятся в Петербурге);
- низковольтные;
- реакторы детюнинг (Германия);
- модульные – самые новые и дорогостоящие на данный момент приборы;
- контакторы (Украина).
Их стоимость разнится в зависимости от организации, для боле точной и исчерпывающей информации посетите форум, где обсуждается компенсаций реактивной мощности.
Источник: https://www.asutpp.ru/kompensaciya-reaktivnoj-moshhnosti.html
Конденсаторные установки компенсации реактивной мощности
Генерация потребителями электрической энергии реактивной мощности вызывает значительные затраты ресурсов техники вхолостую. В связи с этим встает вопрос о том, как свести этот эффект к минимуму. Один из способов это сделать – устанавливать на предприятии, в цеху или хозяйстве частного дома конденсаторные установки компенсации реактивной мощности.
Установка с конденсаторными элементами
Понятие об активной и реактивной мощностях
Когда электросеть включает в себя только активные нагрузочные компоненты, изменения фаз тока и напряжения совпадают друг с другом, и потребляемый ресурс ограничивается полезной мощностью (ее можно также называть активной). Но на практике сети часто включают в себя компоненты, несущие значительную индуктивную нагрузку.
Продуцируемая ею реактивная мощностная компонента отличается отставанием одной из величин (напряжения либо тока) от другой. В итоге в периоды времени, когда величины имеют обратные друг другу знаки, мощность идет в сторону генератора, не выполняя полезную работу.
Это приводит к тратам энергетических ресурсов вхолостую, при этом за эти траты платит потребитель.
Важно! Реактивная мощность создает избыточную нагрузку на кабельные элементы (для ее нивелирования требуется применение более толстых проводов), коммутационные и трансформаторные устройства, из-за чего они быстрее выходят из строя. Еще один побочный эффект – отклонение сетевого напряжения от номинального показателя.
Фазовый сдвиг между токовой силой и напряжением
Особенности установки компенсационного оборудования
Привязка к индивидуальному потребителю эффективна с точки зрения КПД работы, но обслуживание агрегата в этом случае потребует больше денежных затрат. Если соединить установку с группой нагрузок, денежные затраты будут существенно меньше, но в сети будет наблюдаться уменьшение активных потерь.
Важно! Установку можно подключить как изолированный агрегат с собственным кабельным вводом либо в привязке к основному распредщиту.
Эффективность применения конденсаторных установок
То, насколько выгодным окажется использование агрегата, зависит от правильного выбора способа подключения и дальнейшего обслуживания.
Выбор режима компенсации
Существуют следующие схемы компенсации:
- Централизованная на одной из сторон – там, где присутствует максимальное для подстанции напряжение (6 и более киловатт) или минимальное (400 ватт). Такой принцип подключения обеспечивает разгрузку от индуктивной мощности сетей с высоким напряжением, во втором варианте – еще и трансформаторных устройств, относящихся к подстанции (поэтому этот вариант значительно выгоднее).
- Групповая – агрегат ставят в цеховом помещении, подсоединяют к распределительной точке или шинке на 400 ватт. Тогда без разгрузки обходятся только сети, ведущие к единичным приемникам.
- Индивидуальная – агрегат соединяют напрямую с оборудованием, нуждающимся в разгрузке от реактивной мощности. КПД разгрузки максимальный.
Выбор типа компенсации
Различные типы компенсации реактивной нагрузки отличаются схемами подключения и особенностями управления.
Нерегулируемая компенсация
Здесь к требующему разгрузки оборудованию напрямую или к питающей его шине подсоединяется батарея конденсаторов со стабильной емкостью. Управление реализуется посредством автоматического выключателя или контакторного механизма.
Автоматическая компенсация
Подразумевает поддержание мощностного коэффициента на определенном уровне через контроль продуцируемой индуктивной энергии сообразно с колебаниями нагрузки. Используются специальные батареи и электронное управление.
Динамическая компенсация
Применяется для работы с часто и резко меняющимися нагрузками. Помимо батареи конденсаторов, задействуется электронное устройство, нивелирующее реактивные потери.
Учет условий эксплуатации и содержания гармоник в сети
Установку нужно приобретать, принимая во внимание будущие условия обслуживания в течение всего периода использования.
Учет условий эксплуатации
При планировании использования агрегата нужно учитывать:
- наибольшее годовое число коммутаций;
- температуру воздуха;
- возможные скачки электротока, обусловленные изменениями в кривой напряжения.
Учет воздействия гармоник
Если в сети нет нелинейных нагрузок, используются типовые конденсаторные элементы, при наличии слабовыраженных – детали с большим номиналом. Если нагрузок такого типа много, в ход идут высокоемкие конденсаторы с катушками, предотвращающими резонанс.
УКРМ: что это такое и зачем нужны компенсаторы реактивной мощности
Как часто российские пользователи (домовладельцы и производственные предприятия) получают некачественную электроэнергию и переплачивают за энергоресурсы по причине неэффективности систем энергообеспечения? Практически всегда. И это несмотря на постановления Правительства РФ и приказы Минэнерго, которые вступили в силу более 10 лет назад. А проблема малой эффективности и повышения качества решается – достаточно установить устройство компенсации реактивной мощности с подходящими в конкретной ситуации характеристиками.
Что такое УКРМ
Устройство компенсации реактивной мощности – устройство, поглощающее «лишнее» электричество, не приносящее пользы.
Поток электричества с УКРМ и без установки
Чем мощнее энергопоток по кабелям, тем больше излишков остается из-за колебаний потоков. Результат: износ и перегрев проводов, нецелевые расходы электроэнергии (переплаты), при использовании мощного оборудования повышен риск поломки техники.
Группа «РУСЭЛТ» выпускает приборы для использования в промышленности. В зависимости от условий эксплуатации мы предлагаем различные модели устройств:
- КРМ-0,4(от 20 до 1000 кВар) – используются для автоматического и ручного регулирования мощности;
- КРМ-Ф (от 20 до 1000 кВар) кроме компенсации выполняют вторую немаловажную функцию – фильтрации;
- КРМ-MINI (20, 30, 40 кВар) – управляемые устройства, компенсирующие мощность электричества в сетевых кабелях.
Приборы рассчитаны на промышленную эксплуатацию в умеренных климатических условиях. Полная работоспособность сохраняется в температурном диапазоне -40-+40°С, рекомендованная влажность до 80%.
Конструкция и принцип действия
Конструкция установки
Агрегат состоит из пяти функциональных блоков:
- Батарей-конденсаторов, которые соединяются по схеме «треугольник» с разрядными резисторами.
- Пускателей и дополнительной контактной группы, которые обеспечивают предварительный заряд конденсирующих батарей.
- Предохранителей, минимизирующих риски поломок из-за резких скачков напряжения.
- Разъединителя (в некоторых моделях автоматического выключателя).
- Регулятора коэффициента мощности.
Компенсация реактивной мощности происходит по следующей схеме:
Измерительная система в электронном формате выполняет контроль реактивной и активной энергии (измеряет напряжение токов в сети).
Контроллер (регулятор) проводит замеры мощности, подключая или отключая конденсаторы по мере необходимости. На основании замеров и измерений показания сравниваются с эталонной величиной, при наличии отклонений от заданных параметров устройство переключает аппарат для обеспечения необходимого значения. Проще говоря, УКРМ обеспечивает снижение реактивной энергии при минимальном цикле переключений, чем повышает КПД энергоносителей и снижает риск неисправностей комплектующих электросетей.
Прибор регулярно измеряет расхождение фаз тока и напряжения и меняет свою емкость в зависимости от потребительской необходимости
Как установка помогает экономить деньги?
Установка КРМ, используется в промышленности, при эксплуатации в тандеме
с электродвигателями, которые и являются основными потребителями реактивной мощности. Если «полезная» энергия тратиться на работу мотора, то реактивная приводит к снижению его эксплуатационных преимуществ. например, увеличивается риск преждевременной поломки, чаще нужны остановки оборудования для охлаждения, что отражается на производительности предприятия.
Без УКРМ пользователь платит и за бесполезную энергию
Реактивная доля электричества «гоняется» по проводам, не принося пользы, а из-за ее избытка возникает перегрев, обеспечивается дополнительная нагрузка на сеть и оборудование. Итог: у пользователя двойная потеря – переплата за нецелевую электроэнергию и повышенный риск поломок электрооснащения. А потери и риски сводятся к минимуму без значительных трат – покупкой и установкой УКРМ, И чем больше мощность потребляемой энергии, тем больше выгод от использования компенсатора.
Выгоды использования
Повысить энергоэффективность энергоносителей, свести к нулю вероятность поломок промышленного оборудования помогает установка УКРМ. Причем этот вид компенсации экологичен, ни окружающей среде, ни здоровью человека не наносится какого-либо вреда. К преимуществам использования приборов потребители и специалисты относят:
- увеличение полезной мощности (КПД электросетей и оборудования до 97%);
- снижение количества фактически потребленной энергии на 20-30%;
- увеличение стабильности уровня напряжения;
- повышение срока безаварийной работы техники;
- снижение расходов на коммунальные услуги (электроэнергию);
- уменьшение пропускной способности в электросетях (минимизация риска перегрева и короткого замыкания).
Использование УКРМ в производстве позволяет избежать и таких расходов как штрафы со стороны органов госконтроля.
Компания «РУСЭЛТ» специализируется на производстве современной техники, которая помогает сократить энергетические затраты. Наша задача – удовлетворить запросы потребителей и предоставить устройства, на 100% соответствующие поставленным задачам. В ассортименте УКРМ различной функциональности, конструкции, типа работы, поэтому мы уверены – выбрать прибор с оптимальными характеристиками сможет каждый потребитель.
Источник: https://www.Ruselt.ru/articles/ustroystva-kompensacii-reaktivnoy-moschnosti/
Принцип работы компенсатора реактивной мощности
› Разное
статьи (пока оценок нет)
Загрузка…
Нагрузка предприятий подразделяется на активную, индуктивную и емкостную, все эти виды мощностей зависят от типа работающего оборудования.
Существование реактивной энергии несет отрицательное воздействие на электрические сети, создает электромагнитные поля в электрических устройствах.
Существование реактивного тока создает дополнительную нагрузку, приводящую к снижению качества электроэнергии, влекущую увеличение сечений токовых проводников.
Принципы компенсации реактивной мощности
Компенсацией реактивной мощности называют ее выработку или потребление с помощью компенсирующих устройств.
Принцип компенсации реактивной мощности заключается в следующем.
Как было установлено, ток, проходящий через конденсатор, опережает приложенное к нему напряжение на 90°, в то время как ток, проходящий через катушку индуктивности, отстает от приложенного напряжения на 90°. Таким образом, емкостный ток противоположен индуктивному току и реактивная мощность, идущая на создание электрического поля, противоположна по направлению реактивной мощности, идущей на создание магнитного поля. Поэтому емкостный ток и емкостная мощность считаются условно отрицательными по отношению к току намагничивания и мощности намагничивания, условно принятыми положительными.
Таким образом, численно равные реактивные мощности емкости и намагничивания взаимно “уничтожаются” (QC – QL = 0) и сеть разгружается от протекания реактивной составляющей тока нагрузки.
Принцип компенсации при помощи емкостного тока поясняет векторная диаграмма на рисунке 1.
Рисунок 1 – Принцип компенсации реактивного тока намагничивания[2]: а – схема до компенсации; б – схема с компенсацией
Источник: https://electrik-ufa.ru/raznoe/printsip-raboty-kompensatora-reaktivnoj-moshhnosti
Компенсация реактивной мощности: способы и средства
Компенсация реактивной мощности: способы и средства
Реактивная мощность — часть полной мощности, затрачиваемая на электромагнитные процессы в нагрузке имеющей емкостную и индуктивную составляющие. Не выполняет полезной работы, вызывает дополнительный нагрев проводников и требует применения источника энергии повышенной мощности.
Статьи по теме компенсации реактивной мощности
Реактивная мощность относится к техническим потерям в электросетях согласно Приказу Минпромэнерго РФ № 267 от 04.10.2005.
При нормальных рабочих условиях все потребители электрической энергии, чей режим сопровождается постоянным возникновением электромагнитных полей (электродвигатели, оборудование сварки, люминесцентные лампы и многое др.) нагружают сеть как активной, так и реактивной составляющими полной потребляемой мощности. Эта реактивная составляющая мощности (далее реактивная мощность) необходима для работы оборудования содержащего значительные индуктивности и в то же время может быть рассмотрена как нежелательная дополнительная нагрузка на сеть.
Для наглядности и лучшего понимания происходящих процессов, рекомендуем ознакомиться с роликом о реактивной мощности:
При значительном потреблении реактивной мощности напряжение в сети понижается. В дефицитных по активной мощности энергосистемах уровень напряжения, как правило, ниже номинального. Недостаточная для выполнения баланса активная мощность передается в такие системы из соседних энергосистем, в которых имеется избыток генерируемой мощности. Обычно энергосистемы дефицитные по активной мощности, дефицитны и по реактивной мощности.
Однако недостающую реактивную мощность эффективнее не передавать из соседних энергосистем, а генерировать в компенсирующих устройствах, установленных в данной энергосистеме.
В отличие от активной мощности реактивная мощность может генерироваться не только генераторами, но и компенсирующими устройствами – конденсаторами, синхронными компенсаторами или статическими источниками реактивной мощности, которые можно установить на подстанциях электрической сети.
Компенсация реактивной мощности, в настоящее время, является немаловажным фактором позволяющим решить вопрос энергосбережения и снижения нагрузок на электросеть. По оценкам отечественных и ведущих зарубежных специалистов, доля энергоресурсов, и в частности электроэнергии занимает значительную величину в себестоимости продукции. Это достаточно веский аргумент, чтобы со всей серьезностью подойти к анализу и аудиту энергопотребления предприятия, выработке методики и поиску средств для компенсации реактивной мощности.
Средства компенсации реактивной мощности
Индуктивной реактивной нагрузке, создаваемой электрическими потребителями, можно противодействовать с помощью ёмкостной нагрузки, подключая точно рассчитанный конденсатор. Это позволяет снизить реактивную мощность, потребляемую от сети и называется корректировкой коэффициента мощности или компенсацией реактивной мощности.
Преимущества использования конденсаторных установок, как средства для компенсации реактивной мощности
- малые удельные потери активной мощности (собственные потери современных низковольтных косинусных конденсаторов не превышают 0,5 Вт на 1000 ВАр);
- отсутствие вращающихся частей;
- простой монтаж и эксплуатация (не нужно фундамента);
- относительно невысокие капиталовложения;
- возможность подбора любой необходимой мощности компенсации;
- возможность установки и подключения в любой точке электросети;
- отсутствие шума во время работы;
- небольшие эксплуатационные затраты.
В зависимости от подключения конденсаторной установки возможны следующие виды компенсации:
- Индивидуальная или постоянная компенсация, при которой индуктивная реактивная мощность компенсируется непосредственно в месте её возникновения, что ведет к разгрузке подводящих проводов (для отдельных, работающих в продолжительном режиме потребителей с постоянной или относительно большой мощностью — асинхронные двигатели, трансформаторы, сварочные аппараты, разрядные лампы и т.д.).
- Групповая компенсация, в которой аналогично индивидуальной компенсации для нескольких одновременно работающих индуктивных потребителей подключается общий постоянный конденсатор (для находящихся вблизи друг от друга электродвигателей, групп разрядных ламп). Здесь также разгружается подводящая линия, но только до распределения на отдельных потребителей.
- Централизованная компенсация, при которой определенное число конденсаторов подключается к главному или групповому распределительному шкафу. Такую компенсацию применяют, обычно, в больших электрических системах с переменной нагрузкой. Управление такой конденсаторной установкой выполняет электронный регулятор — контроллер, который постоянно анализирует потребление реактивной мощности от сети. Такие регуляторы включают или отключают конденсаторы, с помощью которых компенсируется мгновенная реактивная мощность общей нагрузки и, таким образом, уменьшается суммарная мощность, потребляемая от сети.
Групповая компенсация
Индивидуальная компенсация
Централизованная компенсация
Установка компенсации реактивной мощности состоит из определенного числа конденсаторных ветвей, которые в своём построении и ступенях подбираются исходя из особенностей каждой конкретной электросети и её потребителей реактивной мощности.
Больше других распространены ветви в 5 кВАр, 7,5 кВАр, 10 кВАр 12,5 кВАр, 20 кВАр, 25 кВАр, 30 кВАр, 50 кВАр. Более крупные ступени включения, например, в 100 кВАр или ещё больше, достигаются соединением нескольких малых ветвей. Таким образом, снижается нагрузка на сеть, создаваемая токами включения и следовательно, уменьшаются образующиеся от этого помехи (например, импульсы тока). Если в напряжении электросети содержится большая доля высших гармоник, то конденсаторы, обычно, защищают дросселями (реакторами фильтрующего контура).
Применение автоматических установок компенсации реактивной мощности позволяет решить ряд проблем:
- снизить загрузку силовых трансформаторов (при снижении потребления реактивной мощности снижается потребление полной мощности);
- обеспечить питание нагрузки по кабелю с меньшим сечением (не допуская перегрева изоляции);
- за счет частичной токовой разгрузки силовых трансформаторов и питающих кабелей подключить дополнительную нагрузку;
- позволяет избежать глубокой просадки напряжения на линиях электроснабжения удаленных потребителей (водозаборные скважины, карьерные экскаваторы с электроприводом, стройплощадки и т. д.);
- максимально использовать мощность автономных дизель — генераторов (судовые электроустановки, электроснабжение геологических партий, стройплощадок, установок разведочного бурения и т. д.);
- облегчить пуск и работу двигателя (при индивидуальной компенсации);
- автоматически отслеживается изменение реактивной мощности нагрузки в компенсируемой сети и, в соответствии с заданным, корректируется значение коэффициента мощности — cosφ;
- исключается генерация реактивной мощности в сеть;
- исключается появление в сети перенапряжения, т. к. нет перекомпенсации, возможной при использовании нерегулируемых конденсаторных установок;
- визуально отслеживаются все основные параметры компенсируемой сети;
Установки компенсации изготавливаются из отдельных, расположенных в металлических шкафах, силовых компенсационных модулей, конструкция которых обеспечивает взаимозаменяемость идентичных элементов установки. Сборка и комплектация установок компенсации реактивной мощности производится на предприятии-изготовителе, а на месте их размещения — только монтаж и подключение к компенсируемой сети электроснабжения.
Установки компенсации реактивной мощности до100 кВАр, обычно, выпускаются в настенном исполнении.
Размещать установки компенсации лучше всего вблизи распределительного щита, т.к. в этом случае упрощается их присоединение к электросети. При соблюдении требований ПУЭ комплектные установки компенсации реактивной мощности можно устанавливать непосредственно в производственных помещениях.
Источник: https://www.nucon.ru/reactive-power/reactive-power-and-types-of-compensation.php
Установки для компенсации реактивной мощности (КРМ), повышающие надежность и экономичность в системе электроснабжения
Существует несколько причин, отрицательно сказывающихся на передаче большого количества реактивной мощности, необходимой для обеспечения нормальной работы двигателей асинхронного типа и силовых трансформаторов.
К ним относятся:
- уменьшение пропускной способности всей электросети;
- повышение количества потерь активной мощности, присутствующей в элементах электросети;
- потери питающего напряжения постоянно увеличиваются.
для повышения качества электроэнергии на промышленных предприятиях установлены компенсирующие устройства, выполняющие функцию источников реактивной (емкостной) мощности.
основную роль в этом вопросе играют установки, служащие для выполнения технологических действий, компенсирующих реактивную мощность (укрм).
преимущества использования установок крм, достигаемые за счет использования технологических инноваций
Один из вариантов УКРМ – это установка с использованием сухих конденсаторов, относящихся к категории устройств, обладающих способностью самостоятельного восстановления после случившегося пробоя диэлектрика. Их конструкция способна обеспечить, помимо восстановления свойств после пробоя, экологическую безопасность, сохраняя очень малые диэлектрические потери. Примером могут служить немецкие металлопленочные конденсаторные батареи «Electronicon». Они обладают защитой от избыточного давления.
Еще одно преимущество — это применение специализированных контроллеров, обладающих способностью автоматически регулировать коэффициент мощности.
Контроллеры подают сигнал о неисправности, предупреждают о нежелательных отклонениях характеристик в электросети. Благодаря этим приборам осуществляется контроль высших токовых и гармоник и улучшения качества напряжения.
Пример: контроллеры фирмы «Lovato» с функцией автоматического срабатывания при нарушении системы электроснабжения.
В конструкции электроустановки используются специализированные контакторы, в устройстве которых задействованы контакты, работающие на включение с опережением и токоограничивающие резисторы, служащие для ограничения токов, возникающих при коммутации и предназначены для повышения эксплуатационного периода конденсаторов.
Основное предназначение УКРМ
Установки КРМ служат для регулировки коэффициента мощности в трехфазных сетях, распределяющих переменный ток частотой 50 Гц с величиной напряжения до 400В в автоматическом режиме.
Основные условия, свойственные для эксплуатации УКРМ
- Температура воздуха окружающей среды от –10 до +40оС;
- Высота расположения над уровнем моря не должна быть выше отметки 1000 м;
- Установка безопасно функционирует в неагрессивной и невзрывоопасной среде, которая не содержит токопроводящую пыль и концентрированные пары, способные привести к короткому замыканию или разрушению металлов и изоляционных покрытий.
Модернизированные установки КРМ
Существуют модернизированные установки КРМ, конструкция их выполнена в унифицированном корпусе ячейки типа КСО-6 (10). В комплект таких установок включен трехпозиционный разъединитель, обладающий возможностью заземления питающей кабельной линии и конденсаторных батарей. Он обладает следующими преимуществами:
- В конструкции применяется специализированный разъединитель с многоуровневой системой блокировок, подобное усовершенствование повышает безопасное использование установки оперативным персоналом.
- Модульное построение дает возможность постепенно увеличивать мощность электроустановки с базового значения 450 до 3150 КвАр с помощью установки дополнительных ячеек.
- Электроконденсаторы высокого напряжения используют в своем устройстве алюминиевую фольгу, применяемую в создании электродов. В качестве диэлектрика применяется полипропиленовая пропитанная пленка, подобные материалы увеличивают пожаробезопасность установки. Пример: конденсаторы фирмы ZEZSILKO.
- Встроенные резисторы обеспечивают разряжение конденсаторных батарей после отключения установки от питания.
Конденсаторные установки, применяемые для низковольтных сетей
Для увеличения коэффициента мощности, характерного для оборудования электроустановок на промышленном производстве используются малогабаритные многоступенчатые, обладающие способностью регулирования, конденсаторные установки, примером могут служить конденсаторные установки навесного типа или с цоколем для монтажа на пол – УКМ58М. Они служат для поддержания коэффициента мощности в заданных границах во время минимального и максимального режима нагрузок, главное – исключение генерирующего режима реактивной мощности.
Достоинства низковольтных конденсаторных установок
- В контакторах используются контакты с включением опережающего действия, в конструкции предусмотрены токоограничивающие резисторы, которые служат для продления срока эксплуатации, при необходимости используется тиристорная коммутация;
- Самовосстанавливающиеся после пробоя диэлектрика, конденсаторы;
- Использование корректирующих регуляторов для коэффициента мощности, работающих в автоматическом режиме, они также служат для сбалансированного ввода в работу конденсаторных батарей, что способствует высокой точности заданного коэффициента при различных реактивных нагрузках;
- Малые габариты;
- С помощью специализированного регулятора можно обеспечить надежную защиту конденсаторов от влияния токов высших гармоник, отрицательно на них влияющих, для этих целей также используются антирезонансные дроссели, которые устанавливаются дополнительно;
- Включение конденсаторных батарей осуществляется в избирательном режиме;
- Сбалансированный режим между реактивной мощностью и нагрузкой в сети.
Использование УКРМ способствует качественному улучшению электрической энергии и рекомендуется при достижении целей по эффективному энергосбережению.
Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта Электронщик, буду рад если вы найдете на моем сайте еще что-нибудь полезное. Делитесь информацией в соцсетях, ставьте лайки, если вам понравилось — это поможет развитию канала
Источник: https://zen.yandex.ru/media/id/5c615e3c9e391400ae5f8253/5d3ff250027a1500ae0ae199