Содержание
- 1 Зачем и для чего нужны резисторы — разбор на примерах и схемах
- 2 Что такое резистор и для чего он нужен в электрической цепи
- 3 Что такое резистор и зачем он нужен
- 4 Резистор простым языком: что это такое, устройство, принцип работы, виды
- 5 Что такое резистор и для чего он предназначен
- 6 Что такое резистор
- 6.1 статьи
- 6.2 Основные характеристики резисторов
- 6.3 Способ монтажа
- 6.4 Выводные резисторы
- 6.5 Из чего состоит резистор проволочного типа
- 6.6 Чем отличается металлопленочный резистор от проволочного
- 6.7 SMD-резисторы
- 6.8 Из чего делают чип-резисторы
- 6.9 Виды резисторов по характеру изменения сопротивления
- 6.10 Что делают подстроечные резисторы
- 6.11 Типы резисторов по характеру вольтамперной характеристики
- 6.12 Виды резисторов по назначению
- 6.13 Шумы резисторов и способы их уменьшения
- 6.14 Обозначение резисторов на схеме
- 7 Что такое резистор, виды и роль в электроцепи, проверка мультиметром
Зачем и для чего нужны резисторы — разбор на примерах и схемах
Резистор – это самая распространенная деталь в электронике. Он гасит лишнее напряжение, ограничивает ток, изменяет и фильтрует сигналы. Резисторы применяются везде, от процессоров, где их миллионы, до энергетических систем. где их размеры с напольный шкаф.
Свойства в теории и практике
Основное свойство этой радиодетали – это сопротивление. Измеряется в омах (Ом).
Разберем для начала понятие активного сопротивления. Оно так называется потому, что есть у всех материалов (даже у сверхпроводников, пусть и 0,00001 Ом). И именно оно является основным у резисторов.
Что говорит теория
В теории у резистора есть постоянное сопротивление, которое на зависит от внешних условий (температуры, давления, напряжения и т.п.).
График зависимости тока от напряжения прямолинеен.
В идеальных и математических условиях у резистора только активное сопротивление. По типам бывают нелинейные и линейные резисторы.
Что на самом деле
На самом у всех резисторов непрямолинейная зависимость тока от напряжения. То есть, его сопротивление тоже зависит от внешних условий, конкретно от температуры.
Конечно, эта зависимость не такая, как у полупроводников, но она есть. И самое главное, у этой радиодетали есть емкость и индуктивность. Помимо активного сопротивления, есть еще и реактивное.
Реактивное сопротивление отличается от активного тем, что оно по разному пропускает электрический ток на разных частотах.
Например, для постоянного тока сопротивление 200 Ом, а если есть высокие значения индуктивности, то на частотах выше 2 кГц, сопротивление будет уже 250 Ом.
Именно поэтому резисторы делаются из разных материалов. Они бывают керамическими, углеродными, проволочными и у них разные допуски и погрешности. SMD деталь обладает меньшей емкостью и индуктивностью, чем DIP.
Еще существует специальные типы резисторов с более выраженной нелинейной вольт-амперной характеристикой. Если у обычных резисторов вольт-амперный график чуть-чуть не линейный, то у такого типа деталей он лавинообразный.
У них сопротивление резко зависит от внешних условий, не так. как у обычных:
- Терморезистор. Повышает или понижает сопротивление из-за влияния температуры;
- Варистор. Изменяет свои свойства в зависимости от приложенного напряжения;
- Фоторезистор. Уменьшается сопротивление, если на него действует свет;
- Тензорезистор. При деформировании (сжатии, механических воздействиях) изменяет свое сопротивление.
Кроме того, еще одна особенность активного сопротивления – выделение тепла, когда проходит электрический ток. Когда протекает электрический ток замкнутой цепи, электроны ударяются об атомы. И поэтому выделяется тепло. Тепло измеряется в мощности. Она рассчитывается исходя из напряжения и тока.
Одна из популярных функций резисторов это снижение напряжения и ограничения тока. Например, если через резистор проходит ток 0,25 А и на нем есть падение напряжения 1 В, то мощность, которая будет на нем рассеиваться это 0,25 Вт.
Поэтому, некоторые детали и изменяют свое сопротивление, даже если они не предназначены для этого. Это уже свойства материала. И если резистор сделан из проволоки, то при нагреве она расширяется и ее проводимость ухудшается. Поэтому у деталей есть допуск, который измеряется в процентах.
И из-за этого и существуют резисторы с разной рассеиваемой мощностью. Нельзя ставить резистор 0,125 Вт на место 1 Вт. Он начнет греться, трескаться, чернеть. А потом и сгорит. Потому, что не рассчитан на такую мощность.
Обозначения на схемах
На схемах в Европе и СНГ обознается прямоугольником и латинской букой R. Согласно ГОСТу, на отечественных схемах не указывается номинал сопротивления, а только номер детали (R). Однако, если под изображением детали указано число, например 120, оно по умолчанию читается как 120 Ом.
В таблице примеры обозначений детали.
Основное обозначение |
0,125 Вт |
0,25 Вт |
0,5 Вт |
1 Вт |
2 Вт |
5 Вт |
Переменный |
Подстроечный |
Типы включения и примеры использования
Основные типы включения это последовательные и параллельные соединения.
Последовательно сопротивление рассчитывается просто. Достаточно все сложить.
При последовательном соединении напряжение распределяется по резисторам согласно их сопротивлениям.
Это второе правило Кирхгофа. Например, напряжение 12 В, а пара резисторов по 1 кОм.
Соответственно, на каждом из них по 6 В. Это простой пример делителя напряжения. Здесь пара деталей делит напряжение, и благодаря этому можно получить необходимое напряжение.
Однако, если вы хотите использовать делитель напряжения для питания цепи, то должны помнить, что нужно согласовать сопротивления. В этой схеме сопротивление 1 кОм. Если вы подключите к ней нагрузку меньше этого сопротивления, то она не получит напряжения на свои выводы в полном объеме. Поэтому, все схемы с делителями напряжения должны быть рассчитаны и согласованы друг с другом.
Рассмотрим пример усилителя на транзисторе.
Здесь R1 и R2 образуют делитель напряжения, они выполняют роль делителя напряжения. Между этими двумя резисторами и базой транзистором протекает ток, который открывает транзистор.
Это необходимо для того, чтобы он работал без искажений.
Параллельное включение
При параллельном соединении радиодеталей, общее сопротивление цепи снижается. Если два резистора по 1 кОм соединены параллельно, то общее будет равно меньше 0,5 кОм, т.е. сопротивление цепи (эквивалентное) равно половине самого наименьшего.
В таком соединении наблюдается первое правило Кирхгофа. В точку соединения направляется ток в 1 А, а в узле он расходится на два направления по 0,5 А.
Формулы расчета
Для двух резисторов:
Для более:
Для тока параллельное соединение — это как вторая дорога или обходной путь. Еще такой тип соединения называют шунтированием. В качестве примера можно привести амперметр. Чтобы увеличить его шкалу показаний, достаточно подключить параллельно резистору еще один шунтирующий.
Его сопротивление рассчитывается по формуле:
Эквивалентное соединение
В схеме усилителя к эмиттеру транзистора VT1 подключена пара из резистора R3 и конденсатора C2.
В этом случае VT1 и R3 подключены последовательно друг к другу. Зачем это надо? Когда усилитель работает, транзистор начинает нагреваться и его сопротивление снижается. R3, как и в случае со светодиодом, не позволяет транзистору перегреваться. Он балансирует общее сопротивление, чтобы транзистор не вносил искажения в сигнал. Это называется режим термостабилизации.
А конденсатор C2 подключен к R3 параллельно. И это нужно для того, чтобы при нормальном режиме работы усилителя, переменный сигнал прошел без потерь. Так работает параллельный фильтр.
Если бы был только один R3, то мощность усилителя была намного меньше из-за того, что он забирает переменное напряжение на себя. А конденсатор пропускает без потерь, но не пропускает постоянное напряжение.
С помощью резисторов и конденсаторов можно делать фильтры. Так называются RC фильтры.
Эта пара может разделять сигнал на постоянные и переменные составляющие.
В качестве примера рассмотрим ФНЧ и ФВЧ.
В схеме фильтра низких частот конденсатор C1 забирает на себя высокочастотные токи. Его сопротивление для них намного меньше, чем у нагрузки. Он шунтирует нагрузку. Таким образом, можно получить низкую частоту, отделив от нее все высокие составляющие.
В фильтре высоких частот наоборот. Высокие частоты свободно проходят через C1, и если в сигнале есть низкочастотные, то они пойдут через R1.
Такие фильтры бывают разные по конструкции. П образные, Г образные и т.п. Конкуренцию резистору может составить катушка индуктивности или дроссель. У них меньше активное сопротивление, но реактивное больше. Благодаря этому снижаются потери от активного сопротивления.
Источник: https://tyt-sxemi.ru/vse-o-rezistorah/
Что такое резистор и для чего он нужен в электрической цепи
Один самых часто используемых элементов в электронике – это резистор. Простым языком его называют «сопротивление». С его помощью можно ограничивать ток или измерять его, делить напряжение, создавать цепи обратной связи. Без сопротивлений не обходится ни одна схема. В этой статьи мы расскажем о том, что такое резистор, какой у него принцип работы, а также для чего нужен этот элемент электрической цепи.
Определение
Резистор происходит от английского «resistor» и от латинского «resisto», что в переводе на русский язык звучит как «сопротивляюсь». В русскоязычной литературе наравне со словом «резистор» используют слово «сопротивление». Из названия ясна основная задача этого элемента – оказывать сопротивление электрическому току.
Он относится к группе пассивных элементов, потому что в результате его работы ток может только понижаться, то есть в отличие от активных элементов – пассивные сами по себе не могут усиливать сигнал. Что из второго закона Кирхгофа и закона Ома значит, что при протекании тока на резисторе падает напряжение, величина которого равна величине протекающего тока, умноженного на величину сопротивления. Ниже вы видите, как обозначается сопротивление на схеме:
Условное обозначение на схеме легко запомнить – это прямоугольник, по ГОСТ 2.728-74 его размеры равны 4х10 мм. Существуют варианты обозначений для резисторов разной мощности рассеивания.
Виды
Классификация резисторов происходит по ряду критериев. Если говорить о дискретных компонентах, то по методу монтажа их делят на:
- Выводные. Используются для монтажа сквозь печатную плату. У таких элементов есть выводы, расположенные радиально или аксиально. В народе выводы называют ножками. Этот вид резисторов активно использовался во всех старых устройствах (20 и боле лет назад) – старых телевизорах, приёмниках, в общем везде, и сейчас используется в простых устройствах, а также там, где использование SMD компонентов по какой-то причине затруднено либо невозможно.
- SMD. Это элементы, у которых нет ножек. Выводы для подключения расположены на поверхности корпуса, незначительно выступая над ней. Они монтируются непосредственно на поверхность печатной платы. Преимуществом таких резисторов является простота и дешевизна сборки на автоматизированных линиях, экономия места на печатной плате.
Внешний вид элементов двух типов вы видите на рисунке ниже:
Мы уже знаем, как выглядит этот компонент, теперь следует узнать о классификации по технологии изготовления. Выводные резисторы бывают:
- Проволочными. В качестве резистивного компонента используют проволоку, намотанную на сердечнике, для снижения паразитной индуктивности используют бифилярную намотку. Проволоку выбирают из металла с низким температурным коэффициентом сопротивления и низким удельным сопротивлением.
- Металлопленочные и композитные. Как можно догадаться, здесь в качестве резистивного элемента используют пленки из металлического сплава.
Так как резистор состоит из резистивного материала, в роли последнего может выступать проволока или плёнка с высоким удельным сопротивлением. Что это такое? Такие материалы как:
- манганин;
- константан;
- нихром;
- никелин;
- металлодиэлектрики;
- оксиды металлов;
- углерод и прочие.
SMD или чип-резисторы бывают тонкопленочными и толстопленочными, в качестве резистивного материала используют:
Материал | Особенности, где используется |
Никель-хром (нихром, NiCr) | в тонкоплёночных, которые устойчивы к высокой влажности (moisture-resistant) |
Нитрид дитантала (Ta2N). | TCR составляет 25 ppm/0С (-55…+1250С); |
Диоксид рутения (RuO2) | в толстоплёночных |
Рутенит свинца (Pb2Ru2O6) | в толстоплёночных |
Рутенит висмута (Bi2Ru2O7) | в толстоплёночных |
Диоксиды рутения, легированные ванадием (Ru0,8V0,2O2, Ru0,9V0,1O2, Ru0,67V0,33O2) | — |
Оксид свинца (PbO) | — |
Висмут иридий (Bi2Ir2O7) | — |
Сплав никеля | В низкоомных (0,03…10 Ом) тонкоплёночных изделиях |
На рисунке ниже изображено, из чего состоит резистор:
По конструкции различают:
- Постоянные. У них два вывода, а сопротивление вы изменять не можете – оно постоянно.
- Переменные. Это потенциометры и подстроечные резисторы, принцип действия которых основан на перемещении скользящего контакта (бегунка) по резистивному слою.
- Нелинейные. Сопротивление компонентов этого типа изменяется под воздействием температуры (терморезисторы), светового излучения (фоторезисторы), напряжения (варисторы) и других величин.
А также по назначению – общего и специального. Последние подразделяются на:
- Высокоомные (диапазон сопротивлений десятки МОм — единицы ТОм, при рабочих напряжениях до 400В).
- Высоковольтные (рассчитаны на работу в цепях с напряжением до десятков кВ).
- Высокочастотные (особенностью работы на высокой частоте является требование к низким собственным индуктивностям и ёмкостям. Такие изделия могут работать в цепях с частотой сигнала в сотни МГц).
- Прецизионные и сверхпрецизионные (это изделия с высоким классом точности. У них допуск по отклонению от номинального сопротивления 0,001 — 1 %, в то время как у обычных допуск может быть и 5% и 10% и больше).
Принцип работы
Резистор устанавливается в электрической цепи для ограничения тока, протекающего через цепь. Величина напряжения, которая на нем упадет, рассчитывается просто – по закону Ома:
U=IR
Падением напряжения называется то количество Вольт, которые появляются на выводах резистора, когда через него протекает ток. Соответственно, если на резисторе у нас упало напряжение, и через него протекает ток – значит на нём выделяется в тепло определенная мощность. В физике есть известная всем формула для нахождения мощности:
P=UI
Или для ускорения расчетов иногда удобно пользоваться формулой мощности через сопротивление:
P=U2/R=I2R
Как работает резистор? У каждого проводника есть определенная внутренняя структура. При протекании электрического тока электроны (носители зарядов) сталкиваются с различными неоднородностями структуры вещества и теряют энергию, она то и выделяется в виде тепла. Если вам сложно понять, то принцип работы сопротивления простыми словами можно сказать так:
Это величина, которая показывает насколько сложно протекать электрическому току через вещество. Она зависит от самого вещества – его удельного сопротивления.
Где: р – удельное сопротивление, l – длина проводника, S – площадь поперечного сечения.
Основные характеристики
Чтобы правильно выбрать резистор важно знать, на какие характеристики нужно смотреть при выборе. К его основным параметрам относится:
В большинстве случае этих сведений достаточно. Новички часто забывают о допустимой мощности резистора, и они у них перегорают. Вы можете рассчитать сколько Ватт выделяется на резисторе по формуле, указанной в предыдущем разделе статьи. Покупайте резисторы с запасом по мощности в 20-30%, больше – лучше, меньше – не нужно!
Где и для чего применяется
Мы уже рассмотрели, что резистор предназначен для ограничения тока в цепи, теперь мы рассмотрим несколько практических примеров, где используется резистор в электротехнике.
Первая область применения — ограничение тока, например, для питания светодиодов. Принцип действия и расчета такой цепи заключается в том, что из напряжения источника питания вычитают номинальное рабочее напряжение светодиода, сумму делят на номинальный (или желаемый) ток через светодиод. В результате вы получаете номинал ограничительного сопротивления.
Rогр=(Uпитания-Uтребуемое)/Iноминальный
Второе — это делитель напряжения. Здесь выходное напряжение рассчитывают по формуле:
Uвых=Uвх(R2/R1+R2)
Также резистор нашел применение для задания тока транзисторам. В сущности, та же схема ограничителя, рассмотренная выше.
Мы рассмотрели, какие бывают резисторы, их назначение и принцип работы. Это важный элемент, с которого следует начать изучение электротехники. Для расчетов цепей с ним используют закон Ома и активной мощности, а в высокочастотных цепях учитывают и реактивные параметры – паразитную ёмкость и индуктивность. Надеемся, предоставленная информация была для вас полезной и интересной!
© Источник
Источник: https://www.entehno.ru/chto-takoe-rezistor-i-dlja-chego-on-nuzhen-v-jelektricheskoj-cepi.html
Что такое резистор и зачем он нужен
Приветствую, друзья!
Сегодня мы познакомимся ещё с одним «кирпичиком» электроники — резистором.
Мы не будем рассматривать все многообразие современных резисторов, но ознакомимся с принципом их действия.
И дадим кое-какие практические рекомендации применительно к компьютерам и периферийным устройствам.
Но сначала немного теории «на пальцах».
Проводники, полупроводники и диэлектрики
С точки зрения прохождения электрического тока (движения заряженных частиц) все вещества можно условно разделить на три большие группы — проводники, полупроводники и диэлектрики.
Проводники — это вещества, которые, в первом приближении, хорошо проводят ток, полупроводники — это вещества, которые плохо проводят ток, диэлектрики — не проводят ток вообще. Класс вещества определяется степенью сопротивление электрическому току.
Степень сопротивления вещества определяется строением его молекул и наличием различного количества свободных заряженных частиц.
Меньше всего сопротивляются прохождению электрического тока проводники, больше всего — диэлектрики.
Большинство металлов и их сплавов являются проводниками.
Проводники используются для доставки электрической энергию от генератора к потребителю.
Чтобы энергия доходила без больших потерь, необходимо, чтобы проводники (провода и кабели) обладали низким сопротивлением. Лучшими проводниками являются серебро, медь и алюминий.
Полупроводники в чистом виде плохо проводят электрический ток.
Но при добавлении определенных веществ в них появляется избыток заряженных частиц того или иного знака (p – положительно заряженных частиц и n – отрицательно заряженных).
При соединении двух полупроводников различного знака получается такая фундаментальная вещь как p-n переход.
P-n переход является основой большинства полупроводниковых приборов (диодов, транзисторов и т.п.)
В компьютере присутствуют и проводники, и полупроводники, и диэлектрики.
Так, например, материнская плата вашего компьютера сделана из диэлектрического материала (стеклотекстолита), на поверхности которого расположены медные проводники, к которым припаяны различные детали.
Процессор вашего компьютера содержит в себе несколько миллионов полупроводниковых транзисторов.
Кроме того, на плате полно отдельных (дискретных) диодов, транзисторов, конденсаторов и резисторов.
Что такое резистор
Резистор — это электронная деталь (условно относящаяся к классу проводников), обладающая сопротивление электрическому току.
В электронной технике очень часто надо внести в электрическую цепь не просто сопротивление, но сопротивление определенной величины.
Чем больше сопротивление электрической цепи, тем меньше соответствии с законом Ома ток в ней при том же напряжении:
I = U/R, где I – электрический ток, U – напряжение, R – сопротивление
Если ток представить в виде движения стада животных, то пастух будет представлять собой напряжение. Сопротивлением в этом случае будет выступать нрав животных. Стадо можно заставить двигаться быстрее (увеличить силу тока), если пастух начнет щелкать бичом (поднимется напряжение).
Ток (сила тока) измеряется в амперах, напряжение — в вольтах, сопротивление – в омах.
Все эти единицы названы в честь физиков Анри-Мари Ампера, Алессандро Вольты и Георга Ома.
Резисторы могут иметь сопротивление от долей Ома до десятков и сотен Мегом (миллионов Ом). Электрическая лампочка накаливания – это, по существу, также резистор, обладающий сопротивлением в несколько десятков или сотен Ом (в зависимости от мощности лампы).
Постоянные, переменные и подстрочные резисторы
Постоянный резистор — это деталь с двумя выводами, которая вносит в электрическую цепь постоянное сопротивление.
Постоянный резистор представляет собой стержень из диэлектрического материала (чаще всего из керамики) на поверхности которой нанесена токопроводящая пленка из углерода или металлического сплава.
На торцы стержня плотно насажены «чашечки», переходящие в проволочные выводы. Чем тоньше плёнка, тем больше сопротивление.
На поверхность стержня могут наноситься канавки, увеличивающие сопротивление. Резистор с небольшим значением сопротивления может представлять собой керамическое основание с намотанным на него тонким проводом.
Для защиты резистивного слоя сверху наносится слой компаунда или лака, поверх которого наносится буквенно-цифровая маркировка или маркировка в виде нескольких цветных колец.
Раньше выводы резисторов в большинстве случаев были медными. Теперь же часто основу этих выводов составляет железо (которое дешевле меди).
Очень часто возникает задача изменить вносимое в электрическую цепь сопротивление. Это задачу выполняют переменные или подстроечные резисторы, у которых три (или более) вывода.
Переменные резисторы отличаются тем, что токопроводящий слой на них нанесен виде подковы, к концам которой подключены два неподвижных вывода.
Третий вывод – подвижный — скользит по подкове, поэтому при перемещении его сопротивление между ним и крайними выводами меняется.
Положение подвижного вывода можно менять посредством соединенной с ним вращающейся рукоятки.
Подстроечный резистор отличается от переменного тем, что в нем труднее повернуть рукоятку.
Часто в рукоятке подстроечного резистора делают прорези под шлиц отвертки.
Иногда после регулировки электрической схемы рукоятку заливают компаундом или полиэтиленом — чтобы невозможно было ее повернуть и сбить настройку.
Кстати, регулятор громкости в ваших настольных акустических системах – это переменный резистор.
SMD резисторы
Если посмотреть на материнскую плату компьютера, можно увидеть другое конструктивное исполнение резисторов (и других деталей тоже). Это SMD (Surface Mounted Device) исполнение, предназначенное для монтажа на поверхность платы.
Традиционный резистор с проволочными выводами монтируется «через отверстие» (through hole).
При этом SMD резисторы выглядят в виде «кирпичиков» различного размера без проволочных выводов. Выводами в этом случае является торцы кирпичика, покрытые припоем.
При использовании SMD компонентов увеличивается плотность монтажа, уменьшаются размеры изделий, и в плате не нужно сверлить сотни отверстий.
Кроме того, из-за отсутствия длинных проволочных выводов уменьшается паразитная емкость и индуктивность резистора, что улучшает характеристики устройства в целом.
Выбор необходимого типоразмера SMD осуществляется исходя из необходимой рассеиваемой мощности. Здесь действует та же физика: чем больше размер, тем большую мощность может рассеивать резистор. Типоразмеры SMD резисторов и рассеиваемая мощность приведены в таблице.
Конструктивно SMD резистор представляет собой кусочек из той же керамики в виде параллелепипеда с нанесенной на его поверхность резистивной пленкой. Толщина и состав резистивных пленок могут быть различными.
Условно SMD резисторы разделяют на толстопленочные (10-70 микрометров) и тонкопленочные (единицы микрометров и менее), которые различаются технологией производства. Резистивные пленки могут быть из нихрома, нитрида тантала, оксида свинца и других материалов. Точная подстройка номинала резистора осуществляется с помощью луча лазера.
Сверху резистивный слой защищен защитным слоем с нанесенной на нем маркировкой.
Существует SMD резисторы с нулевым сопротивлением, которые используется в качестве перемычек.
Тепловое действие электрического тока
При прохождении через проводник электрический ток оказывает тепловое действие — проводник нагревается. Степень нагрева определяется величиной тока и сопротивлением в соответствии с законом Джоуля-Ленца.
Q = I²*R*t, где Q – количество теплоты, I – сила тока, R – сопротивление, t — время
На этом принципе работают паяльники и всякого рода нагреватели.
Заканчивая первую часть статьи, отметим, что и «обычный» резистор в электронной схеме тоже в той или иной мере нагревается.
Через резисторы могут проходить различные токи, поэтому на них может рассеиваться различная мощность.
Тепловая мощность рассеивается в виде излучения. Интенсивность излучения определяется в том числе и площадью поверхности излучения.
Поэтому, чтобы рассеять бОльшую мощность, требуется бОльшая поверхность излучения, и, соответственно, бОльшие габариты резистора.
Источник: https://vsbot.ru/lektronika/chto-takoe-resistor-i-zachem-on-nuzhen.html
Резистор простым языком: что это такое, устройство, принцип работы, виды
При передаче электрического тока на расстояние из-за сопротивления проводов теряется часть энергии. В таких случаях сопротивление является негативным фактором и его стараются свести к минимуму.
Другое дело электрические цепи в электронных устройствах. Там резистор выполняет много полезных функций. В электронных схемах используется свойства этих пассивных компонентов для ограничения тока в многочисленных цепях. С их помощью обеспечивается нужный режим работы усилительных каскадов.
Что такое резистор?
Название этого электронного элемента произошло от латинского слова resisto — сопротивляюсь. То есть – это пассивный элементприменяемый в электрических цепях, действие которого основано на сопротивлении току. Основной характеристикой этого электронного компонента является величина его электрического сопротивления.
Пассивность данного электронного компонента означает то, что основной его функцией является поглощение электрической энергии. В отличие от активных элементов электроники, он ничего не генерирует, а только пассивно рассеивает электричество, преобразуя его в тепло. В схемах замещения сопротивление является основным параметром, в то время как ёмкость и индуктивность – паразитные величины.
Применение
Резисторы применяются во всех электрических схемах для установления нужных значений тока в цепях, с целью демпфирования колебаний в различных фильтрах, в качестве делителей напряжений и т. п.
Резисторы выполняют функции нагрузки в резистивных цепях, используются в качестве делителя напряжения (см. рисунок ниже) и тока, являются элементами фильтров, применяются для формирования импульсов, выполняют функции шунтов и многое другое. Сегодня трудно себе представить электрическую схему, в которой не задействованы несколько резистивных элементов.
Рис. 1. Пример использования резисторов в схеме делителя напряжения
Без резисторов не работает ни один электронный прибор.
Устройство и принцип работы
Конструкция постоянных резисторов довольно простая. Они состоят из керамической трубки, поверх которой намотана проволока или нанесена резистивная плёнка с определённым сопротивлением. На концы трубки вставлены металлические колпачки с припаянными выводами для поверхностного монтажа. Для защиты слоя используется лакокрасочное покрытие.
Устройство таких элементов можно понять из рисунка 2 ниже.
В большинстве моделей такая конструкция традиционно сохраняется, но сегодня существуют различные виды сопротивлений с использованием резистивного материала, устройство которых немного отличается от конструкции описанной выше.
Рис. 2. Строение резистора
Современную электронную аппаратуру наполняют платы, начинённые миниатюрными деталями. Поскольку тенденция к уменьшению размеров электронных приборов сохраняется, то требования к уменьшению габаритов коснулись и резисторов. Для этих целей идеально подходят непроволочные сопротивления. Они просты в изготовлении, а их номинальные мощности хорошо согласуются с параметрами маломощных цепей.
Казалось бы, что эра проволочных резисторов постепенно уходит в прошлое. Однако это не так. Спрос на проволочные сопротивления остаётся в тех сферах, где транзисторы с металлоплёночным или с композитным резистивным слоем не справляются с мощностями электрических цепей.
Для непроволочных резисторов используются следующие резистивные материалы:
- нихром;
- манганин;
- константан;
- никелин;
- оксиды металлов;
- металлодиэлектрики;
- углерод и другиематериалы.
Перечисленные вещества обладают высокими показателями удельного сопротивления. Это позволяет изготавливать электронные компоненты с очень маленькими корпусами, сохраняя при этом значения номинальных величин.
Размеры и формы корпусов, проволочных выводов современных резисторов соответствуют стандартам, разработанным для автоматической сборки печатных плат. С целью надёжного соединения выводов способом пайки, выводы деталей проходят процесс лужения.
Конструкция регулировочных (рис. 3) и подстроечных резисторов (рис.4) немного сложнее. Эти переменные транзисторы состоят из кольцевой резистивной пластины, по которой скользит бегунок. Перемещаясь по кругу, подвижный контакт изменяет расстояние между точками на резистивном слое, что приводит к изменению сопротивления.
Рис. 3. Регулировочные резисторы Рис. 4. Подстроечные резисторы
Принцип действия.
Работа резистора основана на действии закона Ома: I = U/R , где I – сила тока, U – напряжение, R – сопротивление на участке цепи. Из формулы видно как зависят от величины сопротивления параметры тока и напряжения.
Подбирая резисторы соответствующего номинала, можно изменять на участках цепей величины тока и напряжения. Например, увеличивая сопротивление последовательно включённого резистора на участке цепи, можно пропорционально уменьшить силу тока.
Условно резистор можно представить себе в виде узкого горлышка на участке трубки, по которой течёт некая жидкость (см. рис. 5). На выходе из горлышка давление будет ниже, чем на его входе. Примерно, то же самое происходит и с потоком заряженных частиц – чем больше сопротивление, тем слабее ток на выходе резистора.
Рис. 5. Принцип работы
Номиналы резисторов
Элементы имеют свой допуск в отклонениях номинальных сопротивлений. В соответствии с допусками номиналы резисторов разбиты на 3 ряда, которые обозначаются: Е6, Е12, и Е24.
Компоненты ряда Е6 имеют допускотклонения ± 20%; ряда Е12 – ± 10%, а ряда Е24 – ± 5%.
Номиналы резисторов каждого ряда представлены в справочных таблицах, которые можно найти в интернете.
Маркировка
Раньше на корпусах сопротивлений проставляли номинал, ряд, мощность и серийный номер. В связи с миниатюризацией деталей перешли на цветовую маркировку. Параметры сопротивлений кодируют с помощью цветных колец (см. рис. 8).
Рис. 8. Цветовая маркировка
Еслина корпусе присутствует 3 кольца, то первые два обозначают величинусопротивления, третье – множитель, а допустимое отклонение составляет 20%.
Еслина корпусе 4 кольца, то значения первых трёх из них такие же, как в предыдущемпримере, а четвёртое кольцо указывает на величину отклонения.
Пятьколец: первые 3 указывают величину сопротивления, на четвёртой позиции –множитель, а на пятой – допуск.
На сверхточных деталях наносятся 6 цветовых полос: три первых указывают величину сопротивления, полоса на четвёртой позиции – множитель, а пятое кольцо — допустимое отклонение.
Каждому цвету присвоена конкретная цифра (от 0 до 9). Учитывая позицию кольца и его цвет, можно с точностью определить параметры изделия. Для этого удобно пользоваться таблицей цветов (рис. 9).
Рис. 9. Таблица цветов
В некоторых случаях вместо сопротивления используют обычные перемычки. Считается что у них нулевое сопротивление. Вместо перемычек иногда устанавливают резистор с нулевым сопротивлением (по сути та же перемычка, только адаптирована под размеры резистора). На корпус такого сопротивления наносят 1 чёрную полоску.
Маркировка SMD-резисторов
Сопротивления, предназначенные для поверхностного монтажа маркируют цифрами (см. рис. 10). Кодировка сложна для запоминания. В ней учитывается количество цифр и их позиции. Цифрами кодируют типоразмеры изделий и значения основных параметров. Для расшифровки кодов данного типа маркировки существуют справочные таблицы или калькуляторы.
Рис. 10. Цифровая маркировка
Код на рисунке расшифровывается так: номинальное сопротивление 120×106 Ом (последняя цифра показывает количество нулей, то есть степень числа 10). Резистор из ряда Е96 с допуском 1%, типоразмер 0805 либо 1206 (значения, выделенные курсивом, определяются по справочнику).
Обозначение на схемах
Источник: https://www.asutpp.ru/chto-takoe-rezistor.html
Что такое резистор и для чего он предназначен
Пожалуй, самым используемым элементом в электронике является резистор или как его еще именуют по-простому – сопротивление. Если вы посмотрите на абсолютно любую схему, вы найдете не одно сопротивление. А как работает резистор и из чего он состоит, об этом и поговорим в данной статье.
Определение и обозначение по ГОСТу
Существующие разновидности
Как работает резистор
Главные характеристики
Область применения
Заключение
Определение и обозначение по ГОСТу
Итак, для начала давайте дадим определение нашему с вами элементу. Резистор (от латинского «resisto») дословно переводится как «сопротивляюсь». Даже из названия становится ясна основная задача данного элемента – оказывать сопротивление протекающему через элемент электрическому току.
Сопротивление относится к классу пассивных элементов, то есть оно способно лишь ограничивать проходящий ток и напряжение. Условное обозначение согласно ГОСТ 2.728-74 представлено на рисунке ниже:
yandex.ru
Существующие разновидности
Классификация резисторов осуществляется сразу по нескольким параметрам, так, например, по способу монтажа различают следующие модификации:
1. Выводные. Это классический и распространенный вариант используется для монтажа сквозь печатную плату. Такое исполнение резисторов до сих пор используется в простых схемах, где использование SMD компонентов нецелесообразно или невозможно.
2. SMD. У данных сопротивлений нет привычных «ножек». Такие элементы созданы для монтажа автоматизированными системами, что значительно ускоряет и упрощает производство.
По технологии изготовления резисторы бывают следующие:
1. Проволочные. В данных резисторах в роли резистивного элемента выступает намотанная на сердечник проволока и для того, чтобы снизить паразитную индуктивность, используется бифилярная намотка. В таких сопротивлениях используется проволока с низким удельным сопротивлением и температурным коэффициентом.
2. Металлопленочные и композитные. В данных элементах в роли резистивных элементов выступают пленки из специализированных сплавов.
В основном используются следующие материалы
Причем SMD элементы или чип — резисторы выпускаются тонкопленочными или толстопленочными и в роли резистивного материала применяется
Конструктивно резисторы различаются на:
1. Постоянные. Величина сопротивления в таком сопротивлении задана при производстве и не изменяется.
2. Переменные. Это так называемые подстроечные резисторы и потенциометры. У таких изделий присутствует орган управления, с помощью которого можно изменять сопротивление.
yandex.ru
3. Нелинейные. У таких сопротивлений элемент изменяется в зависимости от воздействующих на изделие факторов, например, под воздействием температуры, света, напряжения и т.д.
Так же существуют резисторы специального назначения: высокоомные, высокочастотные, прецизионные (изделия с крайне высоким классом точности).
Как работает резистор
Как вы поняли основная цель резистора — это ограничение проходящего через него электрического тока. И в этом случае работает закон Ома:
U = I*R
Для простоты понимания принципа работы резистора давайте представим себе самый обычный гибкий водяной шланг, через который течет вода под напором, а теперь положите на шланг кирпич. Так как диаметр трубы изменился, из шланга вытекает меньшее количество воды. Так и с током: проходя через резистор, его величина уменьшается.
Итак, через резистор проходит ток и происходит падение напряжения. Из этого можно сделать вывод, что часть мощности, прошедшей через сопротивление, было преобразовано в тепловую энергию. Мощность можно рассчитать по следующей формуле:
P = I2*R
Именно потому что происходит рассеивание мощности на резисторе очень важно правильно выбирать такие сопротивления, которые будут стабильно работать при длительном нахождении изделия под нагрузкой.
Примечание. Резисторы выбираются с запасом по мощности в 20% -30 %.
Главные характеристики
Главными характеристиками абсолютно любого резистора являются следующие три величины:
1. Сопротивление
2. Максимальная рассеиваемая мощность.
3. Класс точности или допуск. От данного параметра зависит насколько реальные параметры изделия могут отличаться от заявленных паспортных данных.
Область применения
Итак, вы уже знаете, что резистор выполняет функцию ограничения тока в цепи. Самым простым примером такого ограничения является схема подключения обычного светодиода. Причем величина ограничивающего сопротивления в этом случае вычисляется по формуле:
yandex.ru
Так же резистор может выступать в роли делителя напряжения. Выходное напряжение рассчитывается по следующей формуле:
yandex.ru
Еще с помощью резистора можно задать ток транзистору, что по факту является таким же ограничителем:
yandex.ru
Заключение
Это лишь малая толика информации о казалось бы таком простом и одновременно сложном элементе как резистор. Если Вы хотите узнать больше, то всегда можете подписаться на канал или найти интересующую вас информацию в специализированной литературе.
Спасибо за ваше внимание!
Источник: https://zen.yandex.ru/media/id/5aef12c13dceb76be76f1bb1/5be5c2af0b9cad00aa107335
Что такое резистор
Резистор (от латинского «resisto», что означает «сопротивляюсь») – это пассивный элемент электрической цепи, обладающий определённым или переменным значением электрического сопротивления. В отличие от активных элементов, пассивные не имеют возможности управлять потоком электронов.
В народе резисторы называют «резюками» или просто «сопротивление». Резисторы отвечают за линейное преобразование силы тока в напряжение и наоборот, а также для ограничения тока и поглощения электрической энергии.
Резистор является одним из самых популярных компонентов и используется в большинстве электронных устройств.
статьи
Наглядный пример работы резистора
С помощью резистора в электроцепи ограничивают ток, получая нужную его величину. В соответствии с законом Ома, чем больше сопротивление при стабильном напряжении, тем меньше сила тока.
Закон Ома выражается формулой U = I*R, в которой:
- U – напряжение, В;
- I – сила тока, А;
- R – сопротивление, Ом.
Также резисторы работают как:
- преобразователи тока в напряжение и наоборот;
- делители напряжения, это свойство применяется в измерительных аппаратах;
- элементы для снижения или полного удаления радиопомех.
Основные характеристики резисторов
Параметры, которые нужно учитывать при выборе резистора, зависят от характера схемы, в которой он будет использован. К основным характеристикам относятся:
- Номинальное сопротивление. Эта величина измеряется в Ом, 1 кОм (1000 Ом), 1 МОм (1000 кОм), 1 ГОм (1000 МОм).
- Максимальная рассеиваемая мощность — предельная мощность, которую способен рассеивать элемент при долговременном использовании. На схемах номинальную мощность рассеивания указывают только для мощных резюков. Чем выше мощность, тем больше размеры детали.
- Класс точности. Определяет, на сколько фактическая величина сопротивления может отличаться от заявленной.
При необходимости принимают во внимание предельное рабочее напряжение, избыточный шум, устойчивость к температуре и влаге, коэффициент напряжения. Если деталь планируется установить в аппарат, работающий на высоких и сверхвысоких частотах, учитывают паразитную емкость и паразитную индуктивность. Эти величины должны быть минимальными.
Способ монтажа
По технологии монтажа резисторы разделяют на выводные и SMD.
Выводные резисторы
Радиальный выводной резистор
Аксиальный выводной резистор
Предназначены для монтажа сквозь печатную плату. Выводы могут располагаться аксиально и радиально. Такие детали использовались в старой аудио- и видеоаппаратуре. Сейчас они применяются в простых аппаратах и в тех случаях, когда использование SMD-резисторов по каким-либо причинам невозможно.
Выводные резисторы по конструкции бывают проволочными, металлопленочными и композитными.
Из чего состоит резистор проволочного типа
В проволочных резисторах резистивным компонентом является проволока, намотанная на сердечник. Бифилярная намотка (двумя параллельными проводами, изолированными друг от друга, или обычным двужильным проводом) снижает паразитную индуктивность. К концам обмотки присоединяют выводы из многожильной меди или латунных пластин. Для защиты от влаги, механических повреждений и загрязнений, проволочные резюки покрывают неорганической эмалью, устойчивой к повышенным температурам.
Чем отличается металлопленочный резистор от проволочного
У металлопленочного резистора резистивным элементом является не проволока, а пленка из металлосплава. Резистивные компоненты (проволока или пленка) в резисторе изготавливаются из сплавов с высоким удельным сопротивлением: манганина, константана, нихрома, никелина.
SMD-резисторы
SMD-резисторы (или чип-резисторы) рассчитаны на поверхностный монтаж и выводов не имеют. Эти миниатюрные детали малой толщины изготавливаются прямоугольной или овальной формы. Имеют небольшие контакты, впаянные в поверхность. Их преимущества – экономия места на плате, упрощение и ускорение процесса сборки платы, возможность использования для автоматизированного монтажа.
SMD-резисторы изготавливают по пленочной технологии. Они могут быть тонко- и толстопленочными. Резистивную толстую или тонкую пленку наносят на изоляционную подложку. Подложка выполняет две функции: основания и теплоотводящего компонента.
Из чего делают чип-резисторы
Тонкопленочные элементы, к которым предъявляются особые требования по влагостойкости, изготавливаются из нихрома. При производстве толстопленочных моделей используются диоксид рутения, рутениты свинца и висмута.
Виды резисторов по характеру изменения сопротивления
Резисторы бывают постоянными и переменными. Постоянные имеют два вывода и стабильное сопротивление, отображенное в маркировке. В переменных (регулировочных и подстроечных) резисторах этот параметр меняется в допустимых пределах, в зависимости от рабочего режима.
В переменных резюках три вывода. На схеме указывается номинал между крайними выводами. Значение сопротивления между средним выводом и крайними регулируется путем перемещения скользящего контакта (бегунка) по резистивному слою. При этом сопротивление между средним и одним из крайних выводов возрастает, а между средним и другим крайним выводами – падает. При движении «бегунка» в другую сторону эффект обратный.
Что делают подстроечные резисторы
Они созданы для периодической подстройки, поэтому подвижная система рассчитана на небольшое количество циклов перемещения – до 1000.
Регулировочные резисторы рассчитаны на многократное использование – более 5 тысяч циклов.
Типы резисторов по характеру вольтамперной характеристики
По ВАХ резисторы разделяются на линейные и нелинейные. Сопротивление линейных резюков не зависит от напряжения и тока, а сопротивление нелинейных элементов меняется, в зависимости от этих (или других) величин. Малогабаритные линейные детали типа МЛТ (металлизированные лакированные термостойкие) используются в аппаратуре связи – магнитофонах и радиоприемниках.
Примером нелинейных резисторов может служить обычная осветительная лампочка, чье сопротивление в выключенном состоянии намного меньше, чем в режиме освещения. В фоторезисторах сопротивление меняется под действием света, в терморезисторах – температуры, тензорезисторах – деформации резисторного слоя, магниторезисторах – магнитного поля.
Виды резисторов по назначению
Резисторы по назначению разделяются на два основных типа – общего назначения и специальные. В свою очередь, специальные сопротивления делятся следующим образом:
- Высокочастотные. Для чего нужны такие резисторы в электроцепях: благодаря низким собственным емкостям и индуктивностям, высокочастотные резисторы могут применяться в схемах, в которых частота достигает сотни мегагерц, они выполняют в них функции балластных или оконечных нагрузок.
- Высокоомные. Величина сопротивления находится в диапазоне от нескольких десятков МОм до ТОм, величина напряжения небольшая – до 400 В. Высокоомные элементы работают в ненагруженном состоянии, поэтому большая мощность им не нужна. Их мощность рассеивания не превышает 0,5 Вт. Высокоомные резисторы служат для ограничения тока в дозиметрах, приборах ночного видения и других приборах с малыми токами.
- Прецизионные и сверхпрецизионные. Эти устройства имеют высокий класс точности: допустимое значение сопротивления составляет 1% от номинального и менее. Для сравнения: у обычных резисторов допустимый диапазон составляет 5% и более. Прецизионные устройства используются в основном в приборах измерения высокой точности.
Шумы резисторов и способы их уменьшения
Собственные шумы резистивных элементов состоят из тепловых и токовых шумов. Тепловые шумы, спровоцированные движением электронов в токопроводящем слое, усиливаются при повышении температуры нагрева детали и температуры окружающей среды. При протекании тока генерируются токовые шумы. Токовые шумы, значение которых существенно выше тепловых, в основном характерны для непроволочных резисторов.
Способы борьбы с шумами:
- Применение в схеме типов резисторов, в которых шумы невелики, благодаря технологии изготовления.
- Переменные резисторы шумят больше постоянных, поэтому в схеме стараются использовать элементы с переменным сопротивлением минимального номинала или не применять их вообще.
- Использование резюков с бОльшей мощностью, чем требуется по технологии.
- Принудительное охлаждение элемента путем установки поблизости вентилятора.
Обозначение резисторов на схеме
Обозначение по ГОСТ 2.728-74 | Описание |
Постоянный резистор без указания номинальной мощности рассеивания | |
Постоянный резистор номинальной мощностью рассеивания 0,05 Вт | |
Постоянный резистор номинальной мощностью рассеивания 0,125 Вт | |
Постоянный резистор номинальной мощностью рассеивания 0,25 Вт | |
Постоянный резистор номинальной мощностью рассеивания 0,5 Вт | |
Постоянный резистор номинальной мощностью рассеивания 1 Вт | |
Постоянный резистор номинальной мощностью рассеивания 2 Вт | |
Постоянный резистор номинальной мощностью рассеивания 5 Вт |
Обозначение переменных, подстроечных и нелинейных резисторов на схемах:
Обозначение по ГОСТ 2.728-74 | Описание | Переменный резистор (реостат). |
Источник: https://www.RadioElementy.ru/articles/chto-takoe-rezistor/
Что такое резистор, виды и роль в электроцепи, проверка мультиметром
Все схемы — большие и малые, сложные и не очень — собраны из определенного набора радиоэлементов. Одни из самых простых и в то же время самых распространенных — резисторы или сопротивления. О том, что это за элемент, для чего его ставят на схеме, какие бывают виды резисторов, — обо всем этом речь пойдет в этой статье.
Что такое резистор и для чего нужен
Пассивный элемент, имеющий определенное сопротивление (постоянное или переменное) называют резистором. Более точное определение вам не даст никто, но эта простая формулировка тем не менее отражает основное свойство этого радиоэлемента.
Для полноты картины, приводим определение из «Википедии»:
Резистор (англ. resistor, от лат. resisto — сопротивляюсь) — пассивный элемент электрических цепей, обладающий определённым или переменным значением электрического сопротивления, предназначенный для линейного преобразования силы тока в напряжение и напряжения в силу тока, ограничения тока, поглощения электрической энергии и др. Весьма широко используемый компонент практически всех электрических и электронных устройств.
Есть еще сопротивления с нелинейными характеристиками, которые изменяют параметры в зависимости от различных условий: температуры, напряжения, света и т.д. Они хоть и являются сопротивлениями, но имеют отдельные названия (варистор, термистор и т.д.), немного иное обозначение и другие технические характеристики. В этой статье речь пойдет о постоянных и переменных резисторах, но тех, которые имеют линейные характеристики (почти линейные, так как идеала нет).
Называют эти элементы либо «резистор» либо «сопротивление». Первое название — произошло от латинского resistо, что переводится как сопротивление. Оба названия отражают основное предназначение этого элемента — изменять сопротивление электрической цепи. На схемах европейского происхождения постоянный резистор обозначается в виде небольшого прямоугольника. На американских схемах принято другое обозначение — в виде ломаной линии. В любом случае рядом со значком стоит латинская буква R и число, которое обозначает номер элемента.
Как выглядит резистор: наиболее типичные виды постоянных резисторов и обозначение в схемах
В небольших схемах рядом с обозначением может стоять номинал, в больших в отдельной таблице (спецификации) прописан тип резистора и его параметры.
Обозначение резисторов на схеме с указанием номинального сопротивления
Без резистора не обходится ни одна схема. Ни электрическая, ни электронная. Назначение резисторов в цепи может быть таким:
- для ограничения тока;
- для создания падения напряжения до определенного значения.
Например, в цепи течет определенный ток, но надо использовать элемент, который не рассчитан на такой ток. В этом случае ставят резистор, после которого ток понижается до нужного уровня. Что делает резистор в схеме? Понижает ток до приемлемого значения. В этом случае часто называют их токоограничивающими — по той задаче, которую они выполняют. Аналогично поступают и с напряжением, только рассчитывается в данном случае не ток, а напряжение.
Виды резисторов: внешний вид постоянных сопротивлений. Справа SMD резистор — предназначен для поверхностного монтажа
Если говорить о внешнем виде, чаще всего, представляют собой небольшого размера цилиндр, от торцов которого отходят монтажные ножки. Чаще всего они выполнены из проволоки, реже из металлической ленты. Бывают резисторы в виде прямоугольного параллелепипеда (керамические) и в виде небольшого прямоугольника (SMD технология) для поверхностного монтажа на печатных платах.
Виды резисторов по характеру сопротивления
Основная характеристика резисторов — собственно сопротивление, которое измеряется в «омах». Обозначается единица измерения как «Ом» — по фамилии немецкого физика Георга Ома. Вторая характеристика — рассеиваемая мощность, измеряется в Ваттах (Вт). Это та мощность, которую элемент может преобразовать в тепло без повреждения работоспособности. Рассеиваемая мощность иногда отражается на схеме в виде черточек на «теле» элемента (см. на рисунке ниже справа), но точно указывается в спецификации. В принципе, рассеиваемую мощность можно примерно определить по размерам элемента. Чем больше корпус, тем больше рассеиваемая мощность.
Обозначение рассеиваемой мощности постоянных резисторов на схеме
Существуют два типа резисторов по характеру сопротивления: постоянные и переменные. Постоянные не меняют свое сопротивление никогда (в идеале). Переменные изменяют, но принудительно. Для этого надо передвинуть бегунок, покрутить ручку или специальный регулятор. Переменные резисторы могут быть регулируемые и подстроечные. У обоих видов можно изменять сопротивление в некотором диапазоне. Только у регулируемых диапазон обычно шире. Именно они стоят на регуляторах громкости, частоты и т.д.
Переменный резистор часто можно увидеть в радиоприемниках
Есть также подстроечные резисторы, предназначенные для точной настройки заданных параметров радио- и электронных устройств в процессе их выпуска из производства при настройке после монтажа или в процессе ремонта. Как правило, они имеют не слишком широкий диапазон. На подстроечных моделях есть небольшой регулятор под отвертку (как правило).
По назначению
Рассмотрим еще виды резисторов по назначению. Они бывают общего и специального назначения. Сопротивления общего назначения имеют следующие параметры:
- номинал от 1 Ом до 10 МОм,
- мощность от 0,125 Вт до 100 Вт,
- допуск точности не менее 20%, 10 %, 5%, 2% или 1%.
Они пригодны для работы в сетях напряжением не более 1000 В. Используются как токоограничители или в качестве нагрузок для активных элементов схем. Резисторы специального назначения превосходят «обычные» по одной или нескольким характеристикам. К ним относятся:
- Изготовленные с высокой точностью (максимально допустимое отклонение номинала — 1%), имеющие высокую стабильность параметров. Называют их прецизионные и сверхпрецизионные.
- Высокочастотные. Имеют очень небольшую собственную емкость, благодаря чему и применяются в высокочастотных схемах.
- Высоковольтные (для сетей напряжением выше 1000 В).
- Высокоомные. Номинал выше 100 МОм и напряжение не менее 400 В.
Виды резисторов по назначению
Для ремонта бытовых приборов достаточно элементов с обычными характеристиками. А вообще, при замене стоит придерживаться правила: ставить элемент того же номинала и с теми же характеристиками. Если элементная база старая и найти точно такой же экземпляр сложно или стоит он несоизмеримо, ищем аналог. При подборе аналогов номинал выбираем «один в один», а характеристики могут быть немного лучше. Хуже брать не следует, так как это может стать причиной некорректной работы устройств.
Виды резисторов по способу изготовления и их особенности
Постоянные сопротивления изготавливают несколькими способами. От способа производства в некоторой степени меняются свойства, поэтому приходится знать еще и виды резисторов по способу изготовления. Они бывают:
- Проволочные.
- Непроволочные:
- металлические;
- композиционные;
- фольговые (металлофольговые);
- графитные.
Самые «древние» — проволочные. Они же самые недорогие. Зато непроволочные могут иметь очень малое допустимое отклонение от номинала, некоторые другие полезные особенности.
Проволочные
Проволочные резисторы представляют собой отрезок металлической проволоки, намотанной на керамическое основание. Проволока используется специальная — константановая для обычных, нихромовая — для высокоомных. Сверху витки проволоки могут быть:
- залиты керамикой;
- покрыты эмалью или лаком.
Некоторые виды резисторов проволочного типа можно отличить внешне: в керамическом прямоугольном корпусе и трубчатого типа (C5-35B или ПЭВР). Они явно отличаются от других. При этом ни тонкослойными, ни композиционными быть не могут.
Так выглядят проволочные резисторы разных видов исполнения
Другие по внешнему виду почти не отличаются. Разве что тем, что при сравнимых номиналах они будут больше по размеру. Это и понятно — проволока занимает больше места. По способу монтажа проволочные резисторы бывают — для монтажа на печатные платы (с монтажными отводами) или навесного монтажа. В последнем случае на плате должны быть предварительно установлены крепления.
Если разбить корпус проволочного резистора, увидим следующую картину
Есть у них одна особенность: значительная паразитная индуктивность. Из-за нее проволочные сопротивления не используют в схемах, работающих с высокочастотными переменными напряжениями. Для сетей постоянного напряжения или переменного, но небольшой частоты (50 Гц, к примеру), они подходят.
Непроволочные
Большинство современных резисторов выпускаются без проволоки, но многие из них делают по похожей методике. На диэлектрическое основание наносится слой токопроводящего вещества. Это может быть металл, сплав или композиционный материал. Поэтому их обычно называют «пленочными».
По толщине слоя этот вид резисторов делят на тонкопленочные (от долей микрона до 1-2 микрон) и толстопленочные. Чем меньше толщина пленки, тем выше сопротивление. Для получения больших номиналов могут на пленке нарезают канавку. Поверх пленка может покрываться защитным слоем (оксидная пленка или лак, краска), может накладываться еще слой керамики.
Конечно, при использовании различных материалов меняются технологические процессы, но в общем схема изготовления такова.
Строение пленочных резисторов разных видов
Итак, вот какие бывают пленочные резисторы:
- Металлические. Это один из самых распространенных видов резисторов, так как они имеют достаточную точность и невысокую стоимость. Используют металлы — хром, палладий, тантал; сплав — нихром; металлокерамику — кермет. Преимущественно производятся нихромовые пленочные резисторы, так как у них малый температурный коэффициент сопротивления (с изменением температуры сопротивление почти не изменяется), мало греются, обладают стабильными параметрами. Имеют меньшие размеры по сравнению с углеродистыми.
- Композиционные. Вместо металла на керамическое основание наносят композиты. Выпускаются 13 типов элементов этого вида. Все их можно разделить на две группы — высокоомные и высоковольтные (от 2,5 кВ до 60 кВ). Предназначены для работы в цепях переменного и постоянного тока. Их основной недостаток — высокий уровень токовых шумов — от 15 до 40 мкВ/В.
- Фольговые. На диэлектрический корпус наклеивается тонкая или супер-тонкая фольга, покрывается сверху слоем диэлектрика. Эта технология позволяет получить резисторы высокой точности (прецизионные и суперпрецизионные). Металлофольговые резисторы отличаются очень высокой стабильностью параметров, в том числе их номинал почти не изменяется при изменениях приложенного напряжения. Но основной плюс — они мало шумят. Поэтому используются в усилителях, приемниках/передатчиках, измерительных приборах и специальном оборудовании.
- Угольные или углеродистые. В качестве токопроводящего слоя используется графит. Могут быть пленочного типа или объемными. По номиналу бывают от 10 Ом до 10 МОм. Их плюсы — можно использовать в высокочастотных приборах, широкий диапазон эксплуатационных температур — от -60°C, до +125°C, имеют низкий уровень шумов. Недостаток — они сильно греются. Проводящий слой графита может нагреваться до 120°C (такой режим способны выдерживают длительное время). Использоваться могут в схемах переменного, постоянного и импульсного тока.
Так какие виды резисторов лучше использовать? Если вам нужна стабильность параметров и низкий уровень шумов — подойдут металлофольговые или пленочные металлические или металлокерамические. Их же можно использовать в схемах, работающих на высокой частоте. Если особых требований нет (для постоянного напряжения или с частотой 50 Гц), обращать внимание на виды резисторов по способу производства нет смысла. Ищите нужный номинал и требуемые характеристики.
Как проверить резистор
Для проверки резистора подойдет практически любой мультиметр. С постоянным резистором могут произойти только две неприятности:
- Обрыв резистора — его сопротивление стремится к бесконечности;
- Сильное изменение сопротивления.
В электрической схеме легко заметить подгоревший резистор — в этом случае он обязательно должен был подвергнуть прозвонке при помощи мультиметра. Необходимо заметить, что обрыв резистора может произойти и без изменения внешнего вида (без «подгорания»).
Процесс проверки резистора следующий:
- Определяете сопротивление по цифровой или цветовой маркировке;
- Выставляете мультиметр в режим измерения сопротивления исходя из номинала резистора;
- Проверяете соответствие сопротивления указанному на корпусе.
Если сопротивление резистора находится в допустимых пределах (для углеродистых отечественных резисторов С1-4 допустимые отклонения от номинала могут доходить до ±10 %), то резистор исправен. В противном случае он нуждается в замене.
Процесс проверки постоянных резисторов при помощи цифрового мультиметра продемонстрирован в видео ниже.
Проверка переменных резисторов немного сложнее. Необходимо проверить качество контакта щетки с токопроводящим элементом. В некоторых случаях неисправный переменный резистор можно отремонтировать.
Источник: https://elektroznatok.ru/info/elektronika/rezistor