Содержание
- 1 Ремонт люминесцентных ламп своими руками
- 2 Дроссель для ламп дневного света — как проверить? Схема подключения и ремонт
- 3 По какой схеме лучше подключить дроссель к люминесцентной лампе
- 4 Дроссель для ламп: схема подключения, принцип работы, замена,
- 4.1 Для чего нужна пускорегулирующая аппаратура
- 4.2 Схема подключения люминесцентной лампы
- 4.3 Зачем нужен дроссель в схеме
- 4.4 Преимущества и недостатки электромагнитного дросселя
- 4.5 Можно ли обойтись без него
- 4.6 Типовые неисправности — замыкание, перегрев, обрыв
- 4.7 Как проверить электромагнитный дроссель
- 5 Дроссели (ПРА) для люминесцентных ламп:устройство,принцип работы и ремонт
- 6 Подключение и замена дросселя для ламп дневного света
- 7 Ремонт светильников дневного света: причины неисправностей и способы их устранения
Ремонт люминесцентных ламп своими руками
Многие системы освещения уже давно пользуются лампами дневного света. Они отличаются экономичностью, высокими эксплуатационными и техническими характеристиками. В настоящее время появились компактные устройства, где система управления свободно размещается в корпусе. Такие лампы могут использоваться в обычных светильниках с резьбовыми патронами.
В связи с конструктивными особенностями и применением пускорегулирующей аппаратуры, иногда в ходе длительной эксплуатации возникают неисправности, и тогда приходится выполнять ремонт люминесцентных ламп своими руками или вызывать специалистов.
Взаимодействие компонентов лампы дневного света
Для того чтобы лампа дневного света заработала, совсем недостаточно ее простого подключения к электрической сети на 220 вольт, как это делается с обычными лампочками накаливания. Запуск осуществляется при помощи специальных пускорегулирующих устройств, которые могут быть электромагнитными (ЭмПРА) или электронными (ЭПРА). Эту особенность должен знать каждый, кто собрался выполнять ремонт люминесцентной лампы самостоятельно.
Электромагнитные устройства хотя и относятся к устаревшим, до сих пор применяются во многих светильниках. Они отличаются невысокой эффективностью, шумом и мерцанием во время работы из-за низкого коэффициента пульсаций. Использование до настоящего времени объясняется их дешевизной, надежностью и простотой ремонта.
Работа ЭмПРА осуществляется по определенной схеме. Чтобы запустить лампочку, требуется пробить ее внутреннюю газовую среду. С этой целью, с помощью накопителя энергии – дросселя, создается импульс высокого напряжения. Однако данной схемы недостаточно, чтобы лампа заработала и стала гореть.
Необходим предварительный разогрев электродов для последующей эмиссии и создание тлеющего разряда.
Решение этой задачи осуществляется с помощью стартера, подключаемого параллельно с лампой. Этот прибор выполнен в виде небольшой стеклянной лампочки, внутри которой расположены контакты в виде биметаллических пластин. При подаче напряжения они находятся в холодном замкнутом состоянии и через них к спиралям начинает поступать ток. В процессе подачи тока биметаллические контакты разогреваются и размыкаются. Энергия, накопленная в дросселе, поддерживает течение тока до момента пробоя газовой среды. После этого люминесцентная лампа начинает самостоятельно гореть без посторонней помощи.
Как варить инвертором: советы новичкам
Электромагнитные устройства чаще всего являются причиной неисправностей. Электронная аппаратура обеспечивает более качественную работу и не так часто ломается. Как правило, такой блок выходит из строя целиком и подлежит полной замене. Ремонт электронного балласта люминесцентной лампы осуществляется по собственной схеме, путем последовательного тестирования всех компонентов.
Причины неполадок в люминесцентных лампах
Основные неполадки в работе люминесцентных ламп связаны с состоянием пускорегулирующей аппаратуры, называемой балластом. В электромагнитных устройствах чаще всего выходят из строя стартер и дроссель, а в электронных – перегорают различные полупроводниковые и другие элементы. Эту особенность следует учесть, выполняя ремонт светильников с люминесцентными лампами.
Кроме неполадок в аппаратуре запуска и управления, могут возникнуть неисправности и в самом источнике освещения. Чаще всего это происходит в результате износа, старения или перегорания отдельных деталей и компонентов. Поэтому, зная устройство, можно легко установить причину, почему не запускается и не загорается лампа.
Одним из основных признаков неисправности является мигание прибора во время запуска. Этим они отличаются от обычных лампочек, которые перегорают мгновенно. Процесс моргания указывает на возможные изменения химического состава газовой среды в процессе эксплуатации. В таких случаях снижается содержание ртутных паров из-за их постепенного вырождения.
Иногда причиной моргания становятся выгоревшие электроды, на которых уменьшается количество нанесенного активного вещества.
Когда люминесцентные лампы начинают мигать, становится хорошо заметно почернение с торцов стеклянной трубки. Именно появление нагара указывает на выгоревшую спираль и необратимые химические процессы. В таких случаях ремонт уже не проводится, возможно лишь продление срока эксплуатации на короткое время. Для этого используется несложная схема или электронный прибор с функцией холодного пуска, подключаемая к выводам контактов.
В некоторых случаях возможно моргание при включении даже полностью исправного светильника. Это происходит под влиянием неблагоприятных факторов. Например, цепь стартера может разорваться, когда синусоида проходит нулевую отметку, и тогда индукционного импульса оказывается недостаточно, чтобы ионизировать внутреннюю газовую среду. Эта же причина вызывает мигание при запуске из-за низкого сетевого напряжения. В дальнейшем, в процессе работы, при отсутствии скачков напряжения, исправный светильник работает ровно и устойчиво, поскольку пускорегулирующая аппаратура поддерживает определенный уровень тока в газовой смеси.
Защита от токов короткого замыкания
Неисправен дроссель в ЭмПРА
Многие неисправности люминесцентных ламп связаны с дросселем, содержащимся в схеме ЭмПРА. Внешне это проявляется следующим образом:
- Светильник не включается совсем.
- После включения по краям образуется тусклое свечение, но прибор полностью не загорается. Лампа может ярко вспыхнуть и больше не гореть.
- Становятся хорошо заметны мерцания, а само свечение очень тусклое.
- Вдоль стеклянной колбы возможно появление светящегося бегающего потока, поверхность засвечена неравномерно и т.д.
- В то время как лампа светится, становится хорошо заметна чернота по краям трубок.
Проверку следует начинать с наличия сетевого напряжения, которое может полностью отсутствовать, например, из-за обрыва на линии. Затем проводится визуальный осмотр и проверка целостности спиралей. Если они оборваны, лампу необходимо заменить. Далее проверяется состояние контактов в патроне, выясняется исправность стартера. Если все элементы в норме, можно переходить к проверке дросселя.
В первую очередь с помощью мультиметра измеряется его сопротивление. Тестер выставляется в нужный режим и проводятся замеры. Все последующие действия будут зависеть от результатов измерений:
- На табло мультиметра знак бесконечности – дроссель сгорел, не работает и его нужно менять.
- Сопротивление менее 40 Ом свидетельствует о межвитковом замыкании. В таких случаях лампа работает лишь короткое время и затем сгорает. То есть, дроссель также подлежит замене.
- При нулевом сопротивлении в дросселе, как правило, имеет место короткое замыкание. Стартер будет неоднократно пытаться запустить лампу, но она не включится. Дроссель необходимо менять.
- При отсутствии мультиметра можно выполнить частичную проверку путем прозвонки. Если дроссель в нормальном состоянии, то индикатор будет реагировать – светиться или пищать. Отсутствие какой-либо реакции указывает на неисправность или обрыв индукционного устройства.
Неисправности и ремонт электронного балласта
Существуют разные схемы электронных балластов, но принцип действия каждого из них практически не отличается. Поэтому ремонт люминесцентной лампы производится в определенной последовательности, с некоторыми различиями. В газоразрядных устройствах установлены нити накаливания, обладающие некоторой индуктивностью. Благодаря этому свойству они включаются в схему автоколебательного контура с катушками и конденсаторами. Этот контур находится в обратной связи с инвертором, основой которого служат мощные транзисторные ключи.
Расчет тока по мощности и напряжению
Нагревание нитей приводит к увеличению их сопротивления, параметры колебаний подвергаются изменениям. Инвертор реагирует на эти изменения и выдает нужное значение напряжения для запуска лампы. Пройдя сквозь ионизированный газ, ток выполняет шунтирование напряжения на нитях и снижает их накал. Сила тока внутри лампы регулируется за счет обратной связи инвертора и контура автоколебаний.
Питание инвертора осуществляется с помощью диодного выпрямителя, оборудованного фильтрационной системой, выполняющей сглаживание помех. Высокая частота инвертора позволяет полностью исключить моргание и шум во время работы, поэтому ЭПРА пользуются широкой популярностью среди потребителей.
Зная устройство электронного балласта, гораздо проще определиться с тем, как его быстро отремонтировать. Качественная диагностика может быть выполнена только в специализированной мастерской с использованием осциллографа и прочего оборудования. Если же проверка производится самостоятельно, то начинать следует с визуального осмотра неисправной платы.
После этого все детали поочередно проверяются измерительными приборами, имеющимися в наличии.
Наиболее частой причиной отказа электронной аппаратуры или ЭПРА для люминесцентных ламп является сгоревший транзистор, который легко определяется в ходе осмотра. При невозможности визуального определения, детали поочередно выпаиваются из платы и прозваниваются мультиметром. В исправном состоянии сопротивление транзисторов будет составлять 400-700 Ом. Если один из транзисторов перегорает, то обычно сгоревшим оказывается и резистор в 30 Ом.
Еще одним слабым местом электронной схемы считается предохранитель с низким сопротивлением от 2 до 5 Ом. Иногда может сгореть один из элементов диодного моста. В таких случаях ремонт ЭПРА заключается в установке вместо неисправных деталей новых элементов, и балласт вновь продолжит свою работу.
Источник: https://electric-220.ru/news/remont_ljuminescentnykh_lamp_svoimi_rukami/2019-02-20-1655
Дроссель для ламп дневного света — как проверить? Схема подключения и ремонт
В условиях постоянного роста тарифов на использование электроэнергии, значительно увеличился спрос населения на более экономичные люминесцентные лампы (лампы дневного света).
Существует достаточно много вариантов их внешнего вида, однако, все они внутри устроены одинаково.
Внутри стеклянной колбы, какой бы формы она ни была, имеются:
- Инертный газ с парами ртути.
- Спиральные электроды. Люминесцентное покрытие (люминофор), нанесенное на стенки колбы.
Принцип работы заключается в следующем: под действием электрического тока, спирали (электроды) раскаляются и зажигают газ, под действием которого начинает светиться люминофор.
Из-за ограниченных размеров электродов, напряжения бытовой электросети недостаточно для их розжига. Поэтому, для розжига электродов применяют специальный элемент – дроссель. Кроме того, во избежание перегрева спирали, используется еще один элемент – стартер, который после зажигания газа отключает накал электродов.
Конструктивно, дроссель (ЭмПРА) представляет собой катушку индуктивности со специальным ферромагнитным сердечником. Как правило, катушка с сердечником помещена в металлический корпус.
Принцип действия
Принцип работы лампы дневного света
В момент включения, первым начинает работу стартер. Он прогревает биметаллические электроды, в результате чего происходит их короткое замыкание. После этого, ток в цепи ограничиваясь только внутренним сопротивлением дросселя, резко возрастает (более чем в 3 раза). Электроды лампы мгновенно разогреваются, а биметаллические контакты стартера, остывая, размыкают цепь запуска.
В момент разрыва электрической цепи в ЭмПРА, благодаря эффекту самоиндукции, возникает высоковольтный импульс (800-1000 В), который обеспечивает электрический разряд в среде инертного газа.
Под действием этого разряда, начинается невидимое ультрафиолетовое свечение паров ртути, которое, воздействуя на люминофор, заставляет его светиться в видимом спектре.
При дальнейшей работе, электрический ток равномерно распределяется между дросселем и лампой, обеспечивая таки образом стабильную работу. При этом, пускорегулирующий аппарат (ПРА) не расходует энергию, а только накапливает ее и преобразовывает.
После зажигания газа, напряжение в колбе не превышает половины напряжения электросети, что недостаточно для последующего замыкания контактов стартера. Таким образом, при устойчивом свечении, стартер не участвует в рабочем процессе и его контакты остаются разомкнутыми.
Зажигание газа не всегда происходит с первого раза. Иногда стартеру необходимо 5-6 попыток повторить вышеописанный процесс, что вызывает, неприятный для глаз человека, эффект “моргания”.
Избежать этого эффекта помогает использование так называемого электронного дросселя (ЭПРА), принцип действия которого заключается в следующем:
- Низкочастотное напряжение бытовой электросети преобразуется в постоянное.
- Полученное постоянное напряжение инвертируется в высокочастотное (до 133 кГц) переменное напряжение.
- При подключении ЭПРА происходит резкое увеличение силы тока и напряжения до величин, достаточной для прогрева электродов и возникновения газового разряда.
- После начала свечения люминофора, напряжение на электродах уменьшается до величины напряжения свечения, а частота импульсов изменяется до уровня, при котором устанавливается ток номинального значения.
Использование электронного балласта позволяет обеспечить розжиг электродов мгновенно и при этом избавиться от неприятного “моргания”.
Виды
Существует несколько способов классификации ПРА, используемых в схемах подключения люминесцентных ламп.
При этом, их различают по:
- Принципу работы:
- ЭмПРА (электромагнитные дроссели);
- ЭПРА (электронные балласты);
- По уровню потери мощности, (уровень потери энергии дросселя может составлять от 15 до 100% мощности лампы):
- D (обычный);
- С (пониженный);
- В (особо низкий);
- По уровню звукового шума:
- Н (нормальный);
- П (пониженный);
- С (очень низкий);
- А (особо низкий);
Подключение лампы дневного света
Схема подключения
В общем случае, ЭмПРА к лампе дневного света подключается по последовательной электрической схеме. При этом, стартер подключается параллельно лампе, а параллельно электрической сети подключается компенсационный конденсатор, который служит для коррекции коэффициента мощности.
Электрическая схема подключения электронного балласта (ЭПРА) к люминесцентной лампе еще проще. В ней вообще отсутствуют дополнительные радиоэлементы.
Существует также большое количество электрических схем подключения ламп дневного света вообще без стартера или любых видов ПРА. Среди них особенно популярна электрическая бездроссельная схема, применение которой нисколько не изменяет технических характеристик люминесцентной лампы, но зато значительно продлевает срок ее службы.
Неисправности и ремонт электромагнитного ПРА
Чаще всего, источником неисправностей, связанных с применением ламп дневного света, является электрическая схема включения ПРА и стартера.
Мгновенно определить причину неисправности достаточно сложно, однако, существуют характерные визуальные эффекты, позволяющие выделить среди причин, вызвавших дефект, неисправный дроссель.
К таким визуальным эффектам относятся:
- “Огненная змейка”, вьющаяся по колбе. Ее появление свидетельствует о том, ток в лампе превышает допустимое значение, вследствие чего, электрический разряд стал нестабильным. Если при проверке вольт-амперной характеристики лампы, выявлены несоответствия заданным параметрам, то дроссель нужно менять.
- Потемнение колбы в зоне выходных контактов. Если потемнела колба в зоне цоколя, значит лампа скоро выйдет из строя. Основная причина этого явления – несоответствие значений пускового и рабочего тока вольт-амперной характеристике. Это чаще всего связано с неисправностью ПРА.
- Перегоревшие спирали. Чаще всего, спирали в лампе дневного света перегорают по причине сильной изношенности изоляции обмотки ЭмПРА.
- Запах гари или появление посторонних звуков. Возможно межвитковое замыкание в катушке индуктивности.
- Лампа не включается. Причиной также может быть неисправный ПРА, в котором произошел обрыв провода в обмотке. Правда этот вид неисправности встречается редко.
Проверку дросселя лучше всего проводить с помощью контрольного, заведомо исправного светильника. Для этого необходимо два провода, идущие от него соединить с цоколем проверочного светильника и включить эту конструкцию в электрическую сеть. Если люминесцентный светильник загорится в полную силу, значит дроссель исправен.
Ремонт
Самостоятельный ремонт ПРА рекомендуется проводить только специалистам, имеющим определенный опыт в осуществлении слесарных и электро-монтажных работ. Кроме того, необходимо наличие измерительных приборов и знание основных правил техники безопасности.
Приступая к замене или ремонту дросселя, необходимо отключить светильник от сети электропитания. Простое отключение его с помощью выключателя не избавит его от наличия напряжения на лампе.
Только после этого можно приступить к демонтажу ПРА и установке на его место нового. При этом, необходимо внимательно следить за тем, чтобы соединить провода в том же порядке, в каком они были подключены ранее.
ВАЖНО: схемы подключения конкретных моделей нанесены на их корпусах. Там же указывают рабочее напряжение и электрическое сопротивление обмотки индуктивности.
Использование мультиметра
На определенном этапе проведения ремонтных работ, можно воспользоваться мультиметром.
С его помощью можно определить:
- Целостность обмотки катушки индуктивности и ее электрическое сопротивление.
- Наличие межвиткового замыкания.
- Наличие обрыва в обмотке катушки индуктивности.
Однако, ремонт обмотки катушки индуктивности – дело не простое и также требует определенных навыков. Поэтому, в случае необходимости, проведение таких работ лучше поручить специалистам.
Советы
Выбирая новый ПРА:
- Необходимо обратить особое внимание на бренд изготовителя. Как правило, приобретение дешевого изделия неизвестного производителя гарантирует низкое качество изготовления. Надежный ПРА должен обеспечить надежную работу в течение не менее 3-х лет.
- На рынке можно случайно приобрести бракованное изделие. Поэтому, если позволяет бюджет, лучше приобрести несколько штук и договориться с продавцом о последующем возврате оставшихся.
- Лучше посоветоваться с людьми, имеющими определенный опыт работы с люминесцентными осветительными приборами.
В настоящее время, электронные ПРА, несмотря на относительно высокую цену, приобретают все большую популярность.
Ведь их использование позволяет:
- Увеличить срок службы ламп дневного света за счет применения щадящих режимов запуска и дальнейшего функционирования. Кроме того, в схеме подключения отсутствует часто ломающийся стартер.
- Полностью избавиться от шума и “моргания” в процессе эксплуатации.
- Получить до 20% экономии электроэнергии.
Источник: https://househill.ru/kommunikacii/electrika/svet/drossel-dlya-lamp.html
По какой схеме лучше подключить дроссель к люминесцентной лампе
Экономки или лампы дневного света встречаются сегодня практически в каждом доме. С их помощью можно хорошо экономить на электроэнергии. Но здесь экономия соседствует с достаточно сложной конструкцией такой продукции.
Дроссель для лампы люминесцентного типа
Достаточно важным компонентом устройства люминесцентных ламп является дроссель. Данная статья расскажет о том, что собой представляет этот элемент, а также какова схема его подключения к лампе дневного света.
Особенности экономки
Лампа дневного света представляет собой газоразрядное устройство, которое является более усовершенствованной лампочкой накаливания. В связи с этим в ее конструкции должен быть элемент, выполняющий роль ограничителя тока. Эту роль и выполняет дроссель (балласт). Без него сила тока в электроцепи будет нарастать лавинообразно, а это приведет к поломке лампы.
Обратите внимание! Дроссель, выступающий в роли ограничителя тока для люминесцентных ламп, может быть электромагнитным или электронным.
Строение экономки
Дроссель в лампе дневного света является балластом и поглощает лишнюю мощность, имеющуюся в электроцепи. В источнике свечения с мощностью в 36-40 Вт он забирается примерно 15 % или 6 Вт.
Дроссель в люминесцентных моделях выполняет следующие функции:
- осуществляет прогрев катодов. Благодаря этому они подготавливаются в эмиссии электродов;
- создает необходимо для стартового разряда напряжение;
- выступает в роли ограничителя тока, который течет через электрическую систему после запуска лампы.
Чтобы балласт (электронный или электромагнитный) мог выполнять свои прямые обязанности, нужна правильная схема подключения. Если в ней будет допущена хотя бы одна ошибка, то свечение люминесцентных ламп не произойдет.
Схема подключения лампы дневного света может иметь различный вид. Она зависит от следующих параметров:
- тип балласта (электронный или электромагнитный):
- количество ограничителей тока;
- тип и количество люминесцентных ламп (к одной, двум) и т. д.
Все эти параметры оказывают влияние на то, как будет выглядеть схема подключения балласта к электроцепи источника света. Каждая такая схема не очень сложная и ее можно использовать для подключения даже при отсутствии глубоких познаний в электротехнике.
Рассмотрим несколько наиболее востребованных вариантов подключения.
Балласт электронного вида
На сегодняшний день наиболее популярным и часто встречаемым видом балласта будет его электронный тип. Поэтому схема подключения электронного дросселя – самая востребованная.
Электронный балласт
Он имеет вид небольшого блока с выведенными клеммами. Внутри такого блока размещена печатная плата. На ней собрана вся система. По ней можно понять, сколько люминесцентных ламп к ней можно подключить.
Образец включения к одной лампе
Чтобы подсоединить электронный тип ограничителя тока необходимо:
- первый и второй коннекторы на выходе блока нужно подключить к одной паре контактов экономки;
- третий и четвертый ведутся к другой паре;
- на вход подается питание.
Как видим, данный вариант достаточно прост в реализации. С ее помощью можно подключить одну лампу дневного света. Несколько сложнее выглядит вариант, используемый для включения двух источников освещения.
Образец включения к двум экономкам
Система, применяемая для запуска двух устройств дневного света к электронному типу балласта, реализуется следующим образом:
- дроссель подсоединяют в разрыв цепи питания нитей, с помощью которых осуществляется накаливание экономки;
- стартеры необходимо вести параллельно к электродам.
Обратите внимание! Соединять электронный балласт, стартерные коннекторы и нити накала необходимо в последовательном порядке.
Некоторые специалисты вместо стартера предлагают применять обычную кнопку от любого электрического звонка. В данной ситуации подача напряжения на прибор будет осуществляться путем нажатия и дальнейшего удерживания кнопки звонка. После того, как экономка зажегся, кнопку можно отпустить.
Балласт электромагнитного вида
Для электромагнитного балласта схема его соединения выглядит следующим образом:
Соединение электромагнитного балласта
Здесь процесс включения предполагает проведение следующих действий:
- в момент поступления тока в дросселе происходит накопление энергии;
- далее она идет на стартерные коннекторы;
- ток направляется в стартер через нити нагрева электродов;
- электроны и сам стартер нагреваются;
- далее происходит размыкание биметаллических контактов на стартере;
- размыкание коннекторов сопровождается выбросом электроэнергии, накопившейся в балласте;
- в электродах напряжение изменяется, что приводит к свечению.
Таким образом будет происходить активация ламп при использовании вышеприведенного варианта соединения.
Включение пары светильников
Для подсоединения дросселя можно использовать вариант соединения как для одной, так и для двух экономок. Рассмотрим более детально, каким образом проделывается включение двух моделей 2х18.
Подсоединение к двум люминесцентным моделям 2х18
Чтобы включить два устройства с мощностью в 18 Вт, необходим индукционный тип устройства с мощностью не менее 36 Вт. Для этого можно использовать ПРА на 40 Вт, а также два стартера на 4-22 Вт. Как видим стартеры необходимо подсоединять параллельно к каждой экономке. Таким образом с каждой стороны будут использованы по одному контакту-штырю.
Оставшиеся коннекторы следует присоединять к электрической сети только через индукционный дроссель.
Уменьшить помехи, а также компенсировать реактивную мощность в данной ситуации можно при помощи конденсатора. Его нужно подводить к питающим компонентам светильников параллельно.
В ситуации, когда имеется встроенная защита, конденсатор может не использоваться.
Вариант включения с двумя балластами и двумя трубками
При наличии двух источников освещения, а также двух комплектов для их соединения, нужно использовать такой вариант.
Подключение с двумя комплектами
В данной ситуации соединение осуществляется следующим образом:
- на вход дросселя подается фазный провод;
- далее он с выхода дросселя направляется на один контакт экономки. При этом со второго коннектора он идет на первый стартер;
- с первого стартера он направляется на вторую пару коннекторов этого же источника света;
- свободный коннектор необходимо соединить с нулевым проводом питания, который на рисунке обозначен как N
Таким же образом происходит включение и второй трубки: вначале идет дроссель, далее с него один коннектор направляется на контакт лампочки, а второй – на стартер. Выход со стартера нужно соединить со второй парой контактов светильника, а свободный коннектор — вывести на нулевой провод.
Особенности соединения
Самым дорогостоящим элементом в электроцепи является дроссель. Поэтому многие люди, чтобы сэкономить, отдают предпочтение тем вариантам, где используется только один балласт.
При этом во время подсоединения всех элементов электрической схемы светильника необходимо помнить о технике безопасности, так как в данной ситуации, по незнанию, можно получить электротравму.
Заключение
Схема для подключения к люминесцентной лампе дросселя может иметь самый разнообразный вид. Она зависит от некоторых параметров. Поэтому, чтобы подобрать оптимальный вариант, нужно знать, какой тип балласта и устройства дневного света у вас имеется в наличии.
Источник: https://1posvetu.ru/montazh-i-nastrojka/po-kakoj-sheme-podklyuchit-drossel-k-lyuminestsentnoj-lampe.html
Дроссель для ламп: схема подключения, принцип работы, замена,
Дроссель (балласт) является обязательным атрибутом практически любого люминесцентного светильника. В этой статье мы рассмотрим, что это за прибор, как он работает и для чего вообще нужен дроссель в люминесцентных лампах.
Для чего нужна пускорегулирующая аппаратура
Прежде чем мы начнем разговор о дросселе, разберемся, что такое пускорегулирующая аппаратура и для чего она нужна. Для того чтобы ответить на эти вопросы, необходимо понять, как работает люминесцентная лампа (ЛДС). Взглянем на ее схематическое изображение.
Схема, поясняющая устройство ЛДС
Перед нами стеклянная колба в виде трубки, в концы которой впаяны две спирали из вольфрама – анод и катод. Сама трубка заполнена инертным газом с небольшим добавлением ртути. Если на анод и катод подать рабочее напряжение, то лампа не засветится – слишком велико сопротивление инертного газа, и тока между электродами не будет.
Для того чтобы прибор запустить, необходимо разогреть спирали. Как только они разогреются, начнется термоэлектронная эмиссия, такая же, как в обычной электронной вакуумной лампе для радиоприемников. Между электродами начнет течь ток, а пары ртути станут излучать ультрафиолет. Попадая на люминофор, ультрафиолет заставляет его ярко светиться. Само же УФ излучение практически полностью поглощается стеклом и люминофором.
Пуск ДЛС обеспечивает специальный прибор – стартер, который кратковременно подает на спирали напряжение (о схеме его включения поговорим позже). Он является пусковой частью пускорегулирующей аппаратуры.
Стартеры для запуска ДЛС
Заставить лампу работать (как говорят, «запустить») можно и другим способом, кратковременно подав на электроды повышенное напряжение. Именно так и работают электронные пускорегулирующие аппараты, о которых поговорим позже.
Но после пуска ЛДС начинаются новые проблемы: тлеющий разряд в колбе переходит в дуговой и мгновенно приводит к короткому замыканию. Чтобы этого не произошло, ток через лампу во время ее работы необходимо ограничивать. Эту роль исполняет еще один прибор – электромагнитный балласт. Он является регулирующей частью пускорегулирующей аппаратуры.
ЭмПРА для ЛДС мощностью 36 Вт
Таким образом, без стартера лампа не запустится, без балласта – сгорит. Комплекс этих двух устройств и называют пускорегулирующим. Теперь, я думаю, тебе понятно, для чего пускорегулирующая аппаратура нужна, и что без нее никак не обойтись.
Важно! Мощность дросселя должна соответствовать мощности лампы. В противном случае лампа либо тут же погаснет, либо не запустится вовсе, либо сгорит.
Схема подключения люминесцентной лампы
Теперь пора узнать, как подключить ЛДС к дросселю и стартеру.
Схема подключения одной люминесцентной лампы
Как это работает? При подаче на светильник напряжения практически все оно, протекая через дроссель, прикладывается к стартеру, поскольку тока через саму лампу нет. За счет тлеющего разряда биметаллическая пластина в стартере разогревается и замыкает цепь, подавая на спирали полное напряжение сети. Тлеющий разряд в стартере гаснет, биметаллическая пластина остывает и размыкает цепь, но к этому времени спирали лампы уже разогреты. За счет обратной самоиндукции дроссель формирует короткий высоковольтный (около 1 кВ) разряд и зажигает лампу.
Важно! Если старта не произошло, то процесс пуска повторяется. Ты наверняка видел старые ЛДС, которые часами «моргают», не могут зажечься.
Теперь напряжение на стартере недостаточно для начала в нем тлеющего разряда, и в дальнейшей работе светильника он не участвует. В работу включается балласт, который ограничивает ток через газоразрядный прибор на заданном уровне. Величина его зависит от мощности дросселя. Именно поэтому я упоминал выше, что мощность дросселя должна соответствовать мощности ЛДС. В противном случае ток будет слишком мал или слишком велик.
Наглядная иллюстрация работы люминесцентного светильника со стартером и электромагнитным дросселем
Пару слов по поводу конденсатора, стоящего на входе схемы. Имея большую индуктивность, балласт потребляет не только активную, но и реактивную энергию, причем последняя расходуется впустую – на нагрев самого дросселя. Конденсатор, который называют компенсирующим, уменьшает расход реактивной энергии, увеличивая КПД конструкции и облегчая режим работы самого дросселя.
Можно ли подключить к одному дросселю две ЛДС? Тут все будет зависеть от рабочего напряжения самих ламп. Если они рассчитаны на напряжение 220 В, то придется собрать схему с двумя дросселями, точнее, собрать две схемы, которые я привел выше. Но если лампы рассчитаны на напряжение 110 В, то такое вполне возможно.
Схема подключения двух люминесцентных ламп к одному дросселю
Принцип работы этой схемы такой же, как и предыдущей, только каждый стартер отвечает за пуск своей ЛДС.
Собирая такую схему, нужно взять стартеры на 110 В и выбрать дроссель, мощность которого равна суммарной мощности ламп. Кроме того, мощность используемых ламп должна быть одинаковой. Именно такая схема используется в растровых светильниках, которые применяются в офисах. В них установлено 4 лампы по 18 Ватт. Лампы запитаны попарно, установлено 2 дросселя.
Нередко на дросселе отечественного производства можно увидеть аббревиатуру ЭмПРА. Именно так правильно называется электромагнитный дроссель – Электромагнитный Пускорегулирующий Аппарат.
Зачем нужен дроссель в схеме
В принципе, зачем нужен дроссель для ламп, мы выяснили: чтобы ограничить через них ток на рабочем уровне. Как он включается, мы тоже знаем. Осталось узнать, как и за счет чего он ограничивает ток, поэтому пора поговорить об устройстве дросселя и принципе его работы.
Дросселем в радиотехнике называют обмотку, навитую на сердечник того или иного типа. Но такой дроссель при частоте 50 Гц имеет относительно низкую индуктивность. Чтобы повысить индуктивность дросселя для люминесцентных ламп без увеличения его габаритов, применяют разомкнутый магнитопровод, оставляя между секциями пластин небольшие зазоры.
Дроссель для ЛДС – та же катушка индуктивности, но с незамкнутым магнитопроводом
Почему дроссель оказывает сопротивление току? Проходя через катушку дросселя, переменный ток намагничивает сердечник, запасая в нем магнитную энергию. Причем при одной полуволне она запасается с одним знаком, при другой – с другим. Но чтобы запасти энергию с другим знаком, нужно сначала «уничтожить» предыдущий: перемагнитить сердечник, который, конечно, “сопротивляется” и не дает это сделать быстро. Именно за счет такого постоянного перемагничивания ток ограничивается.
Вполне очевидно, что дроссель будет выполнять свои функции только в цепи переменного тока.
Преимущества и недостатки электромагнитного дросселя
Теперь поговорим о преимуществах и недостатках. К преимуществам электромагнитного дросселя можно отнести:
- Относительно невысокую стоимость.
- Простоту конструкции.
- Долговечность.
Недостатков у этого прибора, увы, немного больше. Это:
- Большие массогабаритные показатели.
- Мерцание лампы с удвоенной частотой питающей сети.
- Гудение.
- Низкий КПД из-за большого индуктивного сопротивления.
- При отрицательных напряжениях может не запустить лампу.
- Долгий запуск (от 1 до 3 сек.).
- При тяжелом пуске лампа может долго «моргать», из-за чего у нее перегорают спирали.
Можно ли обойтись без него
Выше я писал, что дроссель – неотъемлемая часть пускорегулирующей аппаратуры, а значит, обойтись без него нельзя. Но дроссель дросселю рознь. Существуют приборы, которые ограничивают ток другим, электронным методом. Их называют ЭПРА – Электронный Пускорегулирующий Аппарат.
ЭПРА для люминесцентных ламп
Как видно из схемы, нанесенной на корпус прибора, этот может обслуживать сразу 4 ЛДС, причем для их пуска стартеры не потребуются. Оправдана ли замена ЭмПРА на ЭПРА? Безусловно, поскольку ЭПРА:
- Имеет небольшие массогабариты.
- Не гудит.
- Не вызывает мерцания лампы с частотой сети.
- Имеет высокий КПД (на 30-50% выше, чем у ЭмПРА).
- Запускает ЛДС практически мгновенно.
Электронный дроссель сложнее и дороже электромагнитного, но цена вполне компенсируется достоинствами.
Типовые неисправности — замыкание, перегрев, обрыв
А теперь рассмотрим возможные неисправности электромагнитных дросселей и научимся их (дроссели) проверять. Самые распространенные неисправности ЭмПРА:
- Перегрев. Обычно вызывается неправильной эксплуатацией (светильник не имеет вентиляции или стоит в жарком помещении), напряжением сети выше нормального и производственным браком (межвитковое замыкание).
- Обрыв обмотки. Может быть вызван перегревом, механическим повреждением или просто производственным браком.
- Замыкание. Может быть как межвитковое, так и полное. Причины те же: брак, перегрев, механическое повреждение.
Как проверить электромагнитный дроссель
Сделать это несложно, причем никаких измерительных приборов не потребуется. Достаточно собрать простую схему прямо на коленках, подключив лампу накаливания параллельно стартеру и через дроссель запитанную от розетки:
Схема проверки дросселя
Важно! Мощность лампы для проверки должна примерно равняться мощности проверяемого дросселя (балласта).
Итак, собираем схему, включаем. В результате видим:
- Лампа не горит. В балласте обрыв.
- Горит на полную яркость. Замыкание.
- Моргает или горит вполнакала. Балласт, возможно, исправен.
Пусть теперь схема поработает хотя бы с полчаса. Если балласт нагрелся выше 70 градусов Цельсия, то, скорее всего, он имеет межвитковое замыкание. Такой прибор просто не запустит ЛДС, а если и запустит, то из него в скором времени пойдет дым.
Возможен еще один тип неисправности – пробой на корпус. Тут уже понадобится мультиметр, который поставлен в режим измерения максимально больших сопротивлений. Измеряем сопротивление между клеммами и корпусом дросселя, мультиметр должен показывать «бесконечность».
Вот и подошла к концу беседа об электромагнитных дросселях. Теперь ты знаешь, для чего они нужны, как устроены и даже сможешь самостоятельно проверить этот простой, но такой необходимый прибор.
ПредыдущаяСледующая
Источник: https://LampaExpert.ru/vidy-i-tipy-lamp/lyuminestsentnaya/drossel-dla-lamp
Дроссели (ПРА) для люминесцентных ламп:устройство,принцип работы и ремонт
Люминесцентные лампы, которые являются представителями типа газоразрядных лам, невозможно зажечь как обычные лампы накаливания, просто подключив к ним напряжение питающей сети. Просто не произойдет ничего. Чтобы выполнить зажигание такой лампы необходима специальная схема или электронный пускорегулирующий аппарат.
В случае применения простейшей схемы для запуска тлеющего разряда в колбе газоразрядной лампы потребуется стартер и дроссель. Со стартером все понятно. Он требуется только для запуска, после чего он отключается. В работе всегда участвует дроссель. Его задача ограничивать ток, протекающий через лампы. Может показаться, что достаточно резистора.
Он и меньшие размеры имеет. Теоретически, в цепи на переменном токе можно ограничивать ток резистором, конденсатором, катушкой индуктивности. Но в отличие от резистора, она обладает реактивным сопротивлением. И это делает его наиболее уместным вариантом, для его использования в качестве балластного элемента.
В схеме он подключается последовательно с лампой.
Благодаря реактивному сопротивлению и выполняется защита от лавинообразного нарастания тока.
Устройство дросселя (ПРА)
Внешний вид дросселя
На фотографии представлен дроссель для люминесцентных ламп дневного света. По большому счету он является катушкой индуктивности с металлическим сердечником в корпусе (кожухе) из листового металла. Более современные изготавливаются в термоустойчивом пластиковом корпусе, имеют более низкие массо-габаритные показатели. Это промышленное название (максимально близкий перевод – ограничитель).
Его сопротивление по постоянному току порядка 60 Ом. При проверке мультиметром, в случае индикации бесконечного сопротивления – дроссель неисправен, в обрыве. Если сопротивление менее 55 Ом, это также означает неисправность дросселя. В этом случае он, скорее всего, имеет межвитковое замыкание. Это случалось со старыми ПРА, когда начинает рассыпаться компаунд и происходит отслоение лака с проволоки.
В простейшей схеме он выполняет функцию балласта.
Дроссель в разрезе
Сердечник дросселя обычно изготавливается из трансформаторной стали, при этом пластины, входящие в его набор, электрически не контактируют между собой. Это сделано для уменьшения вихревых токов.
Принцип работы дросселя
Основное, что делает дроссель – это производит сдвиг фазы переменного тока в момент перехода через ноль. За счет этого поддерживается тлеющий разряд в колбе газоразрядной лампы. Для ограничения тока, проходящего через электроды лампы выбран дроссель так как он имеет реактивное сопротивление. Кроме того, любая катушка индуктивности может накапливать энергию.
Для зажигания тлеющего разряда необходим импульс электрического тока, это тоже обеспечивается дросселем.
При подаче питания на схему происходит следующее:
- Ток идет по схеме через каушку, электроды лампы и стартер. Он сравнительно не велик, не более 50 мА.
- В колбе стартера происходит ионизация газа, температура растет.
- Биметаллические контакты замыкаются, сила тока возрастает до 600 мА. Дальнейший ток ограничивается дросселем
- Этого тока вполне достаточно для разогрева электродов лампы EL
- В лампе EL1 начинает протекать тлеющий разряд, образуется ультрафиолетовое излучение.
- Люминофорное покрытие под действием образовавшегося ультрафиолета начинает испускать свет с видимой длиной волны.
Важно помнить, что параметры лампы и дросселя коррелируют. Обычно самостоятельное изготовление дросселя лишено смысла. Сейчас на рынке очень много различной пуско-регулирующей аппаратуры. Дополнительно дроссель снижает помехи и сглаживает пульсации.
Классификация и разновидности дросселей
В разных схемах дроссели могут выполнять разные функции. Допустим в схеме осветителя на люминесцентной лампе у него одни задачи, в электронике при помощи катушки можно, допустим, произвести развязку разночастотных электронных схем, или использовать в LC-фильтре. Это и определяет классификацию.
Вид дросселя зависит от его назначения в каждой конкретной схеме. Это могут быть фильтрующие, сглаживающие, сетевые, моторные, особого назначения. В любом случае, их объединяет общее свойство: высокое сопротивление по переменному току и низкое – по постоянному. Этим можно добиться снижения электромагнитных помех и наводок. В однофазных цепях катушку индуктивности можно применить в качестве ограничителя (предохранителя) от бросков напряжения. Функцию сглаживания дроссель выполняет в фильтрах выпрямителей. Обычно применяется LC-фильтр.
Схема подключения дросселя для люминесцентных ламп
Схема подключения дросселя для люминесцентной лампы
Это простейшая схема для одного источника света. В случае использования двух ламп можно ограничится одним дросселем, но в этом случае, он должен выдерживать суммарную мощность двух ламп.
Схема подключения дросселя для двух люминесцентных ламп
В данной схеме конденсатор С1 желателен, но он не является обязательной частью схемы. Теоретически вместо стартеров можно поставить обычные кнопки без фиксации. После зажигания светильника эти кнопки необходимо отпустить.
Ремонт дросселя
Неисправность дросселя можно установить с помощью замены стартера и/или люминесцентной лампы на заведомо исправные. Если в этом случае освещения нет, то причина в нем. Неисправность дросселя можно определить и при помощи мультиметра в режиме измерения сопротивления. Работоспособный электромагнитный дроссель имеет сопротивление около 60 Ом.
Допустимое отклонение составляет около 10 процентов. Если сопротивление мало, то это указывает на межвитковое замыкание. Это случается на дросселе, который достаточно долго эксплуатируется. Причина заключается в отслоении лакокрасочной изоляции и замыкании витков. Бесконечное сопротивление указывает (либо вообще нет прозвонки) на обрыв, отсутствие контакта.
Скорее всего он просто сгорел, так был скачок напряжения.
Ремонт дросселя для люминесцентной лампы заключается в разборке: снятии кожуха при его присутствии, разборке пластин сердечника и перемотке катушки. Однако, это нецелесообразный процесс в следствие его трудоемкости и низкой цены нового. Его проще заменить на заведомо исправный. При замене необходимо соблюсти мощностные параметры.
Выводы
Хоть схема и имеет полувековую историю, она до сих пор остается актуальной. ПРА необходим для работы люминесцентной лампы. Все компоненты производятся и стоят недорого. К достоинствам этой схемы можно отнести ее простоту и доступность компонентов. Обычно дроссель является самым долгоживущим компонентом схемы.
Из минусов отмечено, что при использовании классической схемы при включении освещения несколько секунд наблюдается мерцание. Это плохо отражается на сроке полезной эксплуатации самого источника света. Т.е. Лампа проработает меньше в такое схеме, чем при использовании электронного пускателя.
В плане экономической целесообразности, при частом включении и выключении света использовать такую элементную базу не выгодно, проще приобрести электронный пускатель, хоть его покупка и обойдется дороже, но это будут одномоментные затраты.
Источник: https://vamfaza.ru/dlja-chego-nuzhny-drosseli-pra-dlja-ljuminescetnyh-lamp/
Подключение и замена дросселя для ламп дневного света
Дроссель для ламп дневного света в широком смысле слова — это обмотка вокруг сердечника определенного вида. Он работает как ограничитель. По конструкции ограничитель похож на небольшой трансформатор, но имеет только одну обмотку, поэтому его принцип действия отличается. Задача трансформатора заключается в передаче всей энергии и гальванической развязности, а задача дросселя в накоплении энергии в индуктивности.
Описание устройства
Светильник дневного света имеет стеклянный корпус, внутри которого находится горелка. По обеим краям расположены электроны, образующие дугу. После включения лампы происходит импульс большого напряжения, который вызывает дуговой разряд. Именно из-за такого разряда лампа может перегреться и даже взорваться.
Как выглядит дроссель
К сведению! Чтобы избежать перепада напряжения и взрыва используют дроссель. Он ограничивает величину тока, который поступает в лампу при включении, тем самым предотвращая перегрев и взрыв. Также ограничитель обеспечивает стабильное напряжение в цепи, таким образом освещение перестает мерцать и работает стабильно.
Характеристики дроссель для ламп
Основной характеристикой является индуктивность. Но, кроме нее, существует еще несколько параметров, которые характеризуют данный прибор. Они определяют мощность устройства, возможности его использования и срок службы.
Основные характеристики:
- мощность. Она определяется видом сердечника и обозначает уровень сигнала, который может пропустить ограничитель. Мощность измеряется в ваттах;
- угол потерь — вспомогательная характеристика, обозначающая качество дросселя. Чем меньше угол, тем ограничитель лучше;
- частота тока. Она измеряется в герцах. В зависимости от данного показателя дроссели делятся на три вида: низкочастотные с установленной границей колебаний в 20-20000 Гц, ультразвуковые ограничители с колебаниями 20-100 кГц и мощные сверхвысокие дроссели колебания, у которых более 100 кГц;
- допустимое значение пропускаемого тока измеряется в амперах;
- сопротивление в неподключенном состоянии измеряется в Омах.
Разные виды дросселей
Обратите внимание! Современный рынок переполнен сотнями видов ограничителей, которые отличаются по своим характеристикам. Таким образом можно найти идеальный вариант, который подходит под конфигурации и электрическую цепь дома. Также ограничители могут отличаться формой и своим весом.
Вам это будет интересно Соединение транзисторов
Принцип работы дросселя для ламп дневного света
Дроссель — это необходимый элемент в цепи. Он накапливает напряжение с помощью витков, которые создают магнитное поле. Далее при воздействии на дроссельный элемент постепенно происходит увеличение тока, а при смене полярности ток начинает убывать. Таким образом стабилизируется напряжение, так как резко изменить уровень тока в ограничителе нельзя. Такое постепенное нарастание и спад происходят из-за магнитного поля обмотки.
Неправильно установленный дроссель может перегреваться. Зачастую нагревается именно обмотка, так как она является наиболее теплоемким элементом. Затем нагретая обмотка начинает плавить другие элементы ограничителя, к примеру, изоляционную прокладку.
Важно! Даже маленький ограничитель на 7 витков в процессе замыкания может стать пожароопасным. Но особо осторожно нужно относиться к мощным моделям с 78 витками и более.
Подключенный дроссель
Процесс перегрева заметен сразу:
- запах прожженной пластмассы в комнате;
- небольшой дым из дросселя.
Неисправный ограничитель может сильно греться и привести к взрыву комнатной лампочки, которая разлетится на множество осколков. При малейших признаках перегрева следует устранить неисправный элемент и поставить на его место новый, и желательно, чтобы это сделал опытный электрик.
Назначение дросселя в лампах
Основная задача ограничителя в цепи — это управление напряжением, которое подается на лампу. Также у него есть вспомогательные функции:
- защита лампы от перепадов напряжения в сети;
- разогрев катодов;
- моментальное создание высокого напряжения;
- ограничение проходимого тока во время работы лампы;
- поддержание стабильной работы лампы путем удерживания напряжения на одном уровне.
Обратите внимание! В зависимости от количества обмоток один ограничитель может использоваться сразу на несколько ламп.
Как подключить или заменить дроссель в лампе дневного света
Самый распространенный вариант подключения ограничительного дросселя к лампе дневного света — это обычная схема со стартером. Принцип действия данной схемы основан на том, что при включении питания в стартере образуется мощный разряд, который направляется к лампе, но ограничитель, установленный на пути, снижает напряжение.
Элементарная схема
Схема устроена таким образом, что в ней имеется только один дроссель, и при необходимости можно добавить еще одну лампу, установив ее параллельно первой.
Схема на две лампы
Также, имея два световых элемента, можно воспользоваться другой схемой.
Схема с конденсатором
В данной схеме предусмотрен электронный конденсатор, но он не обязателен к установке. В теории вместо классических стартеров можно подключаться к сети без кнопки фиксации.
Схема с выпаиванием дросселя
Замена дросселя происходит так, что достаточно выпаять его из цепи с помощью паяльника, по очереди прогрев каждую клемму. После того как клеммы будут достаточно разогреты, можно без труда извлечь дроссель и припаять на его место новый, соблюдая полярность и место установки. Подключаться к сети нужно после завершения паяльных работ.
Важно! Без знаний в электронике не стоит самостоятельно пытаться поменять или провести подсоединение ограничителя. Поскольку неверно установленный элемент может вызвать короткое замыкание. Для этого дела лучше воспользоваться услугами мастера.
Как правильно его использовать
Лампа дневного света — это небольшое газоразрядное устройство. Из-за особенностей конструкции лампы в сети, к которой она должна быть подключена, необходим ограничитель. Данным ограничителем выступает дроссель, но для начала его нужно научиться правильно использовать. Перед тем как самостоятельно создавать электрическую схему, нужно знать, что она может иметь различный вид, который зависит от таких параметров:
- тип подключаемого дросселя;
- количество ламп и ограничителей и метод соединения.
Данные параметры оказывают влияние на конечный вид электроцепи и подключение дросселя. Даже имея минимальные познания в электротехнике, можно без труда собрать несложную схему с несколькими элементами. Важно, чтобы подключение всех элементов было последовательным.
Обратите внимание! Необходимо, чтобы мощность лампы была ниже, чем мощность дросселя.
Пример использования
Срок службы дросселя
В среднем качественный элемент должен выдерживать более 6 циклов включения и выключения лампы. В идеальных условиях рабочий диапазон данной электроники находится в температурном режиме от 5 °С до 55 °С. При минусовых температурах ограничитель может работать неисправно. При нормальных условиях эксплуатации срок службы дросселя составит 3 года. Но это касается только качественных моделей от известных производителей.
Вам это будет интересно Самодельный токопроводящий клей
Ограничитель выполняет важную роль в электрической схеме, в которую подключен световой элемент. Он не дает ей взорваться или перегореть, поэтому в любую электрическую цепь, в которой есть люминесцентный освещавший прибор, нужно подключать дроссель.
Источник: https://rusenergetics.ru/oborudovanie/drossel-dlya-lamp-dnevnogo-sveta
Ремонт светильников дневного света: причины неисправностей и способы их устранения
Люминесцентные лампы получили широкое распространение и успешно вытесняют лампочки накаливания. Люминесцентные светильники сложны в техническом отношении и порой выходят из строя. Поскольку такие лампы достаточно дороги, ремонт светильников дневного света становится актуальным для многих потребителей.
Люминесцентная лампочка представляет собой газоразрядный источник света, в которой разряд электричества в ртутных парах образует ультрафиолетовое излучение. Вследствие воздействия ультрафиолета с помощью люминофора появляется свечение.
Принцип действия светильника показан на схеме, представленной ниже:
Цифровые обозначения на схеме:
- стабилизатор (пускорегулирующее устройство);
- ламповая трубка (включает электроды, газовую среду и люминофор);
- слой люминофора;
- контакты стартера;
- электроды;
- стартерный цилиндр;
- биметаллическая пластина;
- наполнитель колбы (инертный газ);
- нити накаливания.;
- ультрафиолетовое излучение;
- пробой.
Обратите внимание! Слой люминофора необходим для преобразования ультрафиолета. Если поменять состав слоя, можно получить желаемый оттенок света.
Причины неисправностей
Основной элемент люминесцентного светильника — пускорегулирующее устройство (балласт). Существуют электромагнитные (ЭмПРА) и электронные (ЭПРА) балласты. В электромагнитном балласте есть дроссель и стартер, а в электронном устройстве функциональность обеспечивается за счет работы радиоэлектронных элементов.
Большая часть поломок светильника связана с выходом из строя каких-то компонентов электронной схемы, старением, изнашиванием и перегоранием самой лампочки. Ремонт люминесцентных светильников начинается с установления причины, которая привела к возникновению проблемы.
Мигание лампы
Стандартные лампы накаливания перегорают мгновенно и совершенно неожиданно. Люминесцентные светильники изнашиваются постепенно. Источник света начинает моргать во время включения. Такой симптом указывает на перемены в химическом составе дающего свечение газа (перерождение ртутных паров) и говорит о перегорании электродов.
У мигающей лампы дневного света на торцевой части обычно имеется почернение, представляющее собой нагар. Явление возникает как следствие выгоревшей спирали и запущенных процессов химического характера во внутренней части колбы. Отремонтировать такой светильник до состояния нового изделия нельзя, однако продлить срок его службы вполне реально.
Мигание светильника возможно и в результате неисправности ЭмПРА или ЭПРА. В таком случае для определения поломки понадобится замена лампы.
Саму лампочку выбрасывать не нужно. Существуют нормы, согласно которым люминесцентные источники света необходимо утилизировать с соблюдением определенных правил, поскольку внутри лампы дневного света есть ртутные пары.
Еще одна причина не выбрасывать люминесцентную лампу состоит в том, что даже при перегоревших нитях накаливания срок жизни устройства можно продлить. Ремонтные работы состоят в пайке некоторых элементов светильника или подключении его к ЭПРА методом холодного запуска.
В некоторых случаях даже рабочий светильник начинает мигать во время включения из-за ряда негативных событий, таких как прерывание цепочки стартера в момент нахождения синусоиды на нуле. В такой ситуации индукционного скачка напряжения не хватает на процесс ионизации газовой среды в колбе.
Мигание возникает на старте по причине недостаточного напряжения в электросети. В процессе эксплуатации моргания быть не должно, так как пускорегулирующее устройство удерживает ток на заданном уровне.
Ремонтные работы
Ремонт мигающего осветительного прибора осуществляем в такой последовательности:
- Проверяем напряжение в электросети и качественность контактов.
- Меняем лампочку на исправную.
- Если светильник продолжает мигать, меняем стартер в светильниках ЭмПРА, проверяем дроссель. В случае с ЭПРА понадобится починка или замена электронного балласта.
Для выполнения ремонтных работ понадобится определенный набор инструментов, в том числе паяльник, мультиметр, отвертки. Очень неплохо, если кроме инструмента имеется хотя бы базовый набор познаний в электротехнике.
Электромагнитный балласт
Чтобы починить устройство с ЭмПРА, выполняем следующие действия:
- Проверяем конденсаторы. Применяются для снижения электромагнитных помех и компенсации недостатка реактивной мощности. В некоторых случаях неисправность связана с утечками тока в конденсаторах. Эту причину нужно исключить первой, чтобы избежать ненужной замены достаточно дорогостоящего конденсатора.
- Прозваниваем электромагнитный балласт, чтобы найти пробой. Если мультиметр имеет опцию замера индуктивности, по характеристикам дросселя ищем межвитковое замыкание. Перемотка балласта своими руками не стоит потраченного времени — это очень трудоемкая операция. В связи с этим балласт проще поменять или поставить электронный аналог. Нужный ЭПРА можно купить в магазине или достать из вышедшей из строя лампы.
Электронный балласт
Схемы ЭПРА отличаются в зависимости от производителя. Однако принцип их работы ничем не отличается друг от друга: нити накала характеризуются определенной индуктивностью, что дает возможность задействовать их в автоколебательном контуре. Контур включает конденсаторы и катушки, обладает обратной связью с инвертором, состоящим из мощных транзисторных ключей.
Когда нити нагреваются, их сопротивление возрастает, параметры колебаний меняются. Реакция инвертора состоит в выдаче напряжения для розжига лампочки. Происходит шунтирование током через ионизированную газовую среду напряжения на нитях, вследствие чего снижается накал. Обратная связь инвертора с автоколебательным контуром дает возможность управлять силой тока в лампочке.
Для запитывания инвертора используется диодный выпрямитель, оснащенный системой фильтрации и преодоления помех. Высокочастотный инвертор — одна из причин, почему ЭПРА пользуется повышенным спросом у потребителей. Такая лампа не мигает с удвоенной частотой сети 100 Гц, работает практически бесшумно (в отличие от ЭмПРА).
Ремонт электронного балласта
Для диагностирования состояния ЭПРА в условиях мастерской применяют осциллограф, частотный генератор или другую измерительную технику. Если ремонт проводится дома, поиск проблемы осуществляется путем визуального осмотра электронной платы и последовательного поиска испорченного компонента с помощью подручных измерительных устройств.
Вначале проверяем предохранитель (если есть). Поломка предохранителя нередко оказывается причиной выхода из строя светильника. Бывает это в случае скачка напряжения в электросети. Предохранитель перегорает из-за неправильной работы пускорегулирующего устройства.
Причиной неисправности может быть практически любой элемент балласта, в том числе конденсатор, резистор, транзистор, диоды, дроссели и трансформаторы. На проблему указывает почернение электронных компонентов, произошедшее вследствие выгорания.
Работоспособность системы проверяют мультиметром. Чтобы проверка была качественной, рекомендуется разобрать систему на детали, выпаяв нужные компоненты из платы. Когда детали находятся вместе, возможны ложные результаты измерений. Без выпаивания достоверные показатели можно получить лишь на пробой.
Совет! При тестировании элементов системы нередко появляются проблемы с их идентификацией. В связи с этим рекомендуется еще до начала ремонта обзавестись схемой устройства.
Найденные неисправные детали следует заменить. Пайка полупроводников (диодов и транзисторов) должна осуществляться очень аккуратно, так как эти компоненты легко выходят из строя после перегрева.
Обратите внимание! Запуск электронного балласта без нагрузки недопустим. Вначале следует подключить к балласту лампочку дневного света подходящей мощности.
Запуск при сгоревшем светильнике
Если не горит лампа из-за вышедшего из строя стартера и заменить его нет возможности, рекомендуется использовать бесстартерное включение. На случай выхода из строя дросселя существует возможность бездроссельного включения. Рассмотрим данные способы устранения проблемы включения чуть подробнее.
Бездроссельное включение
Схема подключения без участия дросселя представлена на картинке ниже. Способ достаточно сложный, для реализации понадобятся знания в области электротехники.
Подача напряжения осуществляется вслед за коротким замыканием нитей накаливания. После выпрямления напряжение увеличивается в 2 раза, чего более чем достаточно для запуска лампочки. Таким образом, включение производится без использования дросселя.
Конденсаторы С1 и С2 берут на 600 В, для конденсаторов C3 и C4 понадобится номинал напряжения на 1000 В. Спустя определенный срок ртутные пары осядут на один из электродов, свет несколько померкнет (или лампа совсем перестанет загораться). Чтобы выйти из положения, достаточно поменять полярность, то есть развернуть восстановленную люминесцентную лампу.
Бесстартерное включение
В продаже имеются светильники, которые работают исключительно без использования стартера. Такие устройства маркируются аббревиатурой RS. Если подобную лампу поставить на светильник, оснащенный стартером, она очень быстро перегорит. Причина в том, что для данной лампы нужно больше времени на разогрев спирали. Срок службы стартера невелик, механизм часто выходит из строя. В связи с этим было бы практично рассмотреть вопрос о включении лампы дневного света без стартера. Бесстартерная схема включения показана на следующем рисунке.
Продление эксплуатационного срока лампочки
Еще в самом начале массовой эксплуатации ламп дневного света радиолюбители приспособились продлевать сроки эксплуатации перегоревших устройств. Включение таких источников света обеспечивалось за счет роста напряжения, направленного на электроды лампочки.
Увеличение напряжения осуществляется по схеме, в которой участвует двухполупериодный умножитель на конденсаторах и диодах. Благодаря такому подходу на электродах лампы при ее включении имеется пик напряжения, превышающий 1000 В. Этого достаточно, чтобы осуществить холодную ионизацию ртутных паров и создать разряд в газовой среде колбы. В результате появляется возможность розжига и стабильного свечения люминесцентной лампы даже со сгоревшей спиралью.
Главный минус схемы — слишком высокий номинал напряжения конденсаторов, который не должен быть меньше 600 В. Столь большое напряжение делает устройство слишком громоздким. Еще один недостаток — использование постоянного тока, в связи с чем ртутные пары скапливаются рядом с анодом. По этой причине лампочку нужно время от времени переключать, извлекая ее из держателей и проворачивая.
Резистор выступает в качестве ограничителя тока, так как в противном случае не избежать разрыва лампочки. Намотку резистора можно осуществить своими руками. Для этого понадобится нихромовая проволока.
Вместо резистора чаще всего используют лампочки накаливания на 127 В и мощностью от 25 до 150 Вт. Необходимо, чтобы мощность светильника, используемого вместо резистора, была значительно выше мощности люминесцентной лампы.
Номинальные значения других компонентов, расчет по которым проведен с учетом мощности лампы дневного света, показаны в следующей таблице:
Согласно данным, приведенным в таблице, сопротивление и мощность рассеивающей лампочки возникает за счет параллельного подключения нескольких источников света на 127 В. Диоды лучше всего заменить на изделия импортного производства со схожими параметрами. Что касается конденсаторов, они должны работать при напряжении не меньше 600 В.
Ремонт светильников дневного света: причины неисправностей и способы их устранения
Источник: https://220.guru/osveshhenie/istochniki-sveta/remont-svetilnikov-dnevnogo-sveta.html